Publications by authors named "Bigot K"

Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) shows treatment resistance due to a dense stroma and immunosuppressive microenvironment, prompting research into combining FOLFIRINOX chemotherapy with VE-822, a DNA repair inhibitor.* -
  • The study utilized PDAC spheroid models and mouse models to analyze the combination's effects on tumor growth and the immune and fibrotic environment, revealing a strong synergistic effect and increased apoptosis.* -
  • Results indicated that the FOLFIRINOX and VE-822 combo significantly inhibited tumor growth more than FOLFIRINOX alone, improved immune cell activity, and modified the tumor microenvironment, suggesting a potential strategy to enhance treatment effectiveness.*
View Article and Find Full Text PDF

Iron is essential for retinal metabolism, but an excess of ferrous iron causes oxidative stress. In glaucomatous eyes, retinal ganglion cell (RGC) death has been associated with dysregulation of iron homeostasis. Transferrin (TF) is an endogenous iron transporter that controls ocular iron levels.

View Article and Find Full Text PDF

Dysregulation of iron metabolism is observed in animal models of retinitis pigmentosa (RP) and in patients with age-related macular degeneration (AMD), possibly contributing to oxidative damage of the retina. Transferrin (TF), an endogenous iron chelator, was proposed as a therapeutic candidate. Here, the efficacy of TF non-viral gene therapy based on the electrotransfection of pEYS611, a plasmid encoding human TF, into the ciliary muscle was evaluated in several rat models of retinal degeneration.

View Article and Find Full Text PDF

Non-infectious uveitis (NIU) is the first cause of blindness that can be cured if optimal anti-inflammatory therapy can be achieved. Systemic anti-TNF (Tumor Necrosis Factor) agents have been recently approved for NIU but no local delivery of anti-TNF is available. For sustained production of secreted therapeutic proteins into the eye, non-viral gene therapy using plasmid electrotransfer in the ciliary muscle has been proposed.

View Article and Find Full Text PDF

Aims: Blue light is an identified risk factor for age-related macular degeneration (AMD). We investigated oxidative stress markers and mitochondrial changes in A2E-loaded retinal pigment epithelium cells under the blue-green part of the solar spectrum that reaches the retina to better understand the mechanisms underlying light-elicited toxicity.

Results: Primary retinal pigment epithelium cells were loaded with a retinal photosensitizer, AE2, to mimic aging.

View Article and Find Full Text PDF

Currently, several immunotherapies and BACE (Beta Site APP Cleaving Enzyme) inhibitor approaches are being tested in the clinic for the treatment of Alzheimer's disease. A crucial mechanism-related safety concern is the exacerbation of microhemorrhages, which are already present in the majority of Alzheimer patients. To investigate potential safety liabilities of long-term BACE inhibitor therapy, we used aged amyloid precursor protein (APP) transgenic mice (APP23), which robustly develop cerebral amyloid angiopathy.

View Article and Find Full Text PDF

Melanocytes of the hair follicle produce melanin and are essential in determining the differences in hair color. Pigment cell-specific MELanocyte Protein (PMEL17) plays a crucial role in melanogenesis. One of the critical steps is the amyloid-like functional oligomerization of PMEL17.

View Article and Find Full Text PDF

Among the identified risk factors of age-related macular degeneration, sunlight is known to induce cumulative damage to the retina. A photosensitive derivative of the visual pigment, N-retinylidene-N-retinylethanolamine (A2E), may be involved in this phototoxicity. The high energy visible light between 380 nm and 500 nm (blue light) is incriminated.

View Article and Find Full Text PDF

Leber congenital amaurosis (LCA) is a severe hereditary retinal dystrophy responsible for congenital or early-onset blindness. The most common disease-causing mutation (>10%) is located deep in intron 26 of the CEP290 gene (c.2991+1655A>G).

View Article and Find Full Text PDF

Mainzer-Saldino syndrome (MSS) is a rare disorder characterized by phalangeal cone-shaped epiphyses, chronic renal failure, and early-onset, severe retinal dystrophy. Through a combination of ciliome resequencing and Sanger sequencing, we identified IFT140 mutations in six MSS families and in a family with the clinically overlapping Jeune syndrome. IFT140 is one of the six currently known components of the intraflagellar transport complex A (IFT-A) that regulates retrograde protein transport in ciliated cells.

View Article and Find Full Text PDF

Angiogenesis plays an essential role in several diseases of the eye and in the growth of solid tumors, but existing antiangiogenic therapies have limited benefits in several cases. We report the antiangiogenic effects of a monoclonal antibody, CL1-R2, in several animal models of neovascularization. CL1-R2 recognizes human CD160, a membrane receptor which is conserved in various mammal species.

View Article and Find Full Text PDF

Aims: To describe genetic and clinical findings in a French family affected by best vitelliform macular dystrophy (BVMD).

Methods: We screened eight at-risk members of a family, including a BVMD-affected proband, by direct sequencing of 11 bestrophin-1 (BEST1) exons. Individuals underwent ophthalmic examination and autofluorescent fundus imaging, indocyanine green angiography, electro-oculogram (EOG), electroretinogram (ERG), multifocal ERG, optical coherence tomography (OCT), and where possible, spectral domain OCT.

View Article and Find Full Text PDF

Purpose: The retina is highly exposed to oxidative stress due to the high level of oxygen consumption in this tissue and its exposure to light. The main DNA base lesion generated by oxygen free radicals is 8-oxoguanine (8-oxoG). However, its presence in retinal cells and the mechanisms underlying its repair remain undetermined.

View Article and Find Full Text PDF

Purpose: To evaluate functional and ultrastructural changes in the retina of scavenger receptor B1 (SR-BI) knockout (KO) mice consuming a high fat cholate (HFC) diet.

Methods: Three-month-old male KO and wild-type (WT) mice were fed an HFC diet for 30 weeks. After diet supplementation, plasma cholesterol levels and electroretinograms were analyzed.

View Article and Find Full Text PDF

Purpose: Sirtuin1 (Sirt1) is an NAD(+)-dependent deacetylase involved in development, cell survival, stress resistance, energy metabolism, and aging. It is expressed in the mammalian central nervous system (CNS) and is activated during processes associated with neuroprotection. The retinal degeneration 10 (rd10) mouse model of retinitis pigmentosa (RP) was used to investigate the possible role of Sirt1 in this type of retinal degeneration.

View Article and Find Full Text PDF

CX(3)CR1 expression is associated with the commitment of CSF-1R(+) myeloid precursors to the macrophage/dendritic cell (DC) lineage. However, the relationship of the CSF-1R(+) CX(3)CR1(+) macrophage/DC precursor (MDP) with other DC precursors and the role of CX(3)CR1 in macrophage and DC development remain unclear. We show that MDPs give rise to conventional DCs (cDCs), plasmacytoid DCs (PDCs), and monocytes, including Gr1(+) inflammatory monocytes that differentiate into TipDCs during infection.

View Article and Find Full Text PDF

Purpose: High levels of metabolism and oxygen consumption in most adult murine ocular compartments, combined with exposure to light and ultraviolet (UV) radiation, are major sources of oxidative stress, causing DNA damage in ocular cells. Of all mammalian body cells, photoreceptor cells consume the largest amount of oxygen and generate the highest levels of oxidative damage. The accumulation of such damage throughout life is a major factor of aging tissues.

View Article and Find Full Text PDF

Proteins of the bone morphogenetic protein (BMP) family are known to have a role in ocular and skeletal development; however, because of their widespread expression and functional redundancy, less progress has been made identifying the roles of individual BMPs in human disease. We identified seven heterozygous mutations in growth differentiation factor 6 (GDF6), a member of the BMP family, in patients with both ocular and vertebral anomalies, characterized their effects with a SOX9-reporter assay and western analysis, and demonstrated comparable phenotypes in model organisms with reduced Gdf6 function. We observed a spectrum of ocular and skeletal anomalies in morphant zebrafish, the latter encompassing defective tail formation and altered expression of somite markers noggin1 and noggin2.

View Article and Find Full Text PDF

Background And Purpose: Retinal ischemia is a major cause of visual impairment and is associated with a high risk of subsequent ischemic stroke. The retina and its projections are easily accessible for experimental procedures and functional evaluation. We created and characterized a mouse model of global and transient retinal ischemia and provide a comprehensive chronologic profile of some genes that display altered expression during ischemia.

View Article and Find Full Text PDF

Purpose: The PAX6 gene was first described as a candidate for human aniridia. However, PAX6 expression is not restricted to the eye and it appears to be crucial for brain development. We studied PAX6 mutations in a large spectrum of patients who presented with aniridia phenotypes, Peters' anomaly, and anterior segment malformations associated or not with neurological anomalies.

View Article and Find Full Text PDF

Purpose: The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin-1 (hBest1) which is a Ca(2+)-sensitive chloride channel. This study was performed to identify disease-specific mutations in 27 patients with BVMD.

View Article and Find Full Text PDF

p70 S6 kinase (p70S6K) is a key enzyme involved in the control of protein synthesis. We have previously shown that this kinase is insulin sensitive in chicken muscle despite a relative insulin resistance in the early steps of insulin receptor signaling in this tissue, particularly with no change in tyrosine phosphorylation of the insulin receptor substrate 1 (IRS1). The aim of the present study is to further study the p70S6K pathway in chicken muscle.

View Article and Find Full Text PDF

Insulin induces protein accretion by stimulating protein synthesis and inhibiting proteolysis. However, the mechanisms of regulation of protein metabolism by insulin are complex and still not completely understood. The use of approaches combining hyperinsulinemic clamp and isotopic methods, or measurement of the activation of intracellular kinases involved in insulin signaling, in addition to the use of different animal models in a comparative physiology process, provide better understanding of the potential regulation of protein metabolism by insulin.

View Article and Find Full Text PDF

Insulin and amino acids are key factors in regulating protein synthesis. The mechanisms of their action have been widely studied for several years. The insulin signal is mediated by the activation of intracellular kinases such as phosphatidylinositol-3'kinase and the mammalian target of rapamycin (mTOR), affecting the phosphorylation of some major effectors involved in the regulation of translation initiation, i.

View Article and Find Full Text PDF

Chicken muscle ribosomal protein S6 kinase (S6K1) has been recently characterised and its enzymic activity is regulated by the nutritional and hormonal (insulin) status in vivo. The regulation of S6K1 is still unknown in neonatal chicks. The present study aimed to compare the activation of S6K1 in early-feeding (EF) and 48 h-delayed-feeding (DF) chicks from hatching to 4 d of age.

View Article and Find Full Text PDF