This work presents a smart healthcare system for the detection of various abnormalities present in the gastrointestinal (GI) region with the help of time-frequency analysis and convolutional neural network. In this regard, the KVASIR V2 dataset comprising of eight classes of GI-tract images such as Normal cecum, Normal pylorus, Normal Z-line, Esophagitis, Polyps, Ulcerative Colitis, Dyed and lifted polyp, and Dyed resection margins are used for training and validation. The initial phase of the work involves an image pre-processing step, followed by the extraction of approximate discrete wavelet transform coefficients.
View Article and Find Full Text PDF