Mucopolysaccharidosis (MPS) encompasses a group of genetic lysosomal storage disorders, linked to reduced life expectancy and a significant lack of effective treatment options. Immunomodulatory drugs could have the potential to be a relevant medical approach, as the accumulation of undegraded substances initiates an innate immune response, which leads to inflammation and clinical deterioration. However, immunomodulators are not licensed for this indication.
View Article and Find Full Text PDFMucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by a mutation in the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) gene resulting in progressive systemic skeletal dysplasia. There is currently no effective treatment available for this skeletal condition. Thus, the development of a new therapy stands as an unmet challenge in reversing or alleviating the progression of the disease.
View Article and Find Full Text PDFMucopolysaccharidosis Type IIIA (MPSIIIA) is a rare inherited lysosomal storage disease caused by mutations in the SGSH gene. This genetic variation results in the deficiency of the N-sulfoglucosamine sulfohydrolase enzyme, preventing the breakdown of heparan sulfate within lysosomes. The progressive accumulation of partially degraded substrate ultimately leads to brain pathology, for which there is currently no approved treatment.
View Article and Find Full Text PDFHematopoietic stem cell gene therapy (HSCGT) is a promising therapeutic strategy for the treatment of neurodegenerative, metabolic disorders. The approach involves the introduction of a missing gene into patients' own stem cells via lentiviral-mediated transduction (TD). Once transplanted back into a fully conditioned patient, these genetically modified HSCs can repopulate the blood system and produce the functional protein, previously absent or non-functional in the patient, which can then cross-correct other affected cells in somatic organs and the central nervous system.
View Article and Find Full Text PDFMucopolysaccharidosis type IIIA (MPS IIIA) is a rare paediatric lysosomal storage disorder, caused by the progressive accumulation of heparan sulphate, resulting in neurocognitive decline and behavioural abnormalities. Anecdotal reports from paediatricians indicate a more severe neurodegeneration in MPS IIIA patients, following infection, suggesting inflammation as a potential driver of neuropathology. To test this hypothesis, we performed acute studies in which WT and MPS IIIA mice were challenged with the TLR3-dependent viral mimetic poly(I:C).
View Article and Find Full Text PDFCollagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis.
View Article and Find Full Text PDFMucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments.
View Article and Find Full Text PDFMetachromatic leukodystrophy (MLD) is a devastating rare neurodegenerative disease. Typically, loss of motor and cognitive skills precedes early death. The disease is characterised by deficient lysosomal arylsulphatase A (ARSA) activity and an accumulation of undegraded sulphatide due to pathogenic variants in the ARSA gene.
View Article and Find Full Text PDFHIV-1 based lentiviral viruses are considered powerful and versatile gene therapy vectors to deliver therapeutic genes to patients with hereditary or acquired diseases. These vectors can efficiently transduce a variety of cell types when dividing or non-dividing to provide permanent delivery and long-term gene expression. Demand for scalable manufacturing protocols able to generate enough high titre vector for widespread use of this technology is increasing and considerable efforts to improve vector production cost-effectively, is ongoing.
View Article and Find Full Text PDFThe journal retracts the article, An Innovative Tool for Evidence-Based, Personalized Treatment Trials in Mucopolysaccharidosis [...
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2023
Mucopolysaccharidosis type II (MPSII) is a pediatric lysosomal storage disease caused by deficiencies in the IDS (iduronate-2-sulfatase) gene resulting in accumulation of glycosaminoglycans, multisystem disease, and profound neurodegeneration in severe forms. Although enzyme replacement therapy is available for somatic forms of disease, the inability of native IDS to pass the blood-brain barrier renders it ineffective for the brain. We previously demonstrated the short-term efficacy of a brain-targeted hematopoietic stem cell gene therapy approach to treat MPSII mice using lentiviral IDS fused to the blood-brain-barrier-crossing peptide ApoEII (IDS.
View Article and Find Full Text PDFMucopolysaccharidosis Type I (MPSI) is a rare inherited lysosomal storage disease that arises due to mutations in the IDUA gene. Defective alpha-L-iduronidase (IDUA) enzyme is unable to break down glucosaminoglycans (GAGs) within the lysosomes and, as a result, there is systemic accumulation of undegraded products in lysosomes throughout the body leading to multi-system disease. Here, we characterised the skeletal/craniofacial, neuromuscular and behavioural outcomes of the MPSI Idua-W392X mouse model.
View Article and Find Full Text PDFMucopolysaccharidosis type II (MPSII) is a rare pediatric X-linked lysosomal storage disease, caused by heterogeneous mutations in the iduronate-2-sulfatase () gene, which result in accumulation of heparan sulfate (HS) and dermatan sulfate within cells. This leads to severe skeletal abnormalities, hepatosplenomegaly, and cognitive deterioration. The progressive nature of the disease is a huge obstacle to achieve full neurological correction.
View Article and Find Full Text PDFBackground: Mucopolysaccharidosis IIIC (MPSIIIC) is one of four Sanfilippo diseases sharing clinical symptoms of severe cognitive decline and shortened lifespan. The missing enzyme, heparan sulfate acetyl-CoA: α-glucosaminide-N-acetyltransferase (HGSNAT), is bound to the lysosomal membrane, therefore cannot cross the blood-brain barrier or diffuse between cells. We previously demonstrated disease correction in MPSIIIC mice using an Adeno-Associated Vector (AAV) delivering HGSNAT via intraparenchymal brain injections using an AAV2 derived AAV-truetype (AAV-TT) serotype with improved distribution over AAV9.
View Article and Find Full Text PDFMucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a mutation in the gene, resulting in deficiency of the enzyme iduronate-2-sulfatase (IDS) causing heparan sulfate (HS) and dermatan sulfate (DS) accumulation in all cells. This leads to skeletal and cardiorespiratory disease with severe neurodegeneration in two thirds of sufferers. Enzyme replacement therapy is ineffective at treating neurological disease, as intravenously delivered IDS is unable to cross the blood-brain barrier (BBB).
View Article and Find Full Text PDFJ Inherit Metab Dis
September 2023
Lysosomal Storage Disorders (LSDs) are a diverse group of inherited, monogenic diseases caused by functional defects in specific lysosomal proteins. The lysosome is a cellular organelle that plays a critical role in catabolism of waste products and recycling of macromolecules in the body. Disruption to the normal function of the lysosome can result in the toxic accumulation of storage products, often leading to irreparable cellular damage and organ dysfunction followed by premature death.
View Article and Find Full Text PDFMucopolysaccharide diseases are a group of paediatric inherited lysosomal storage diseases that are caused by enzyme deficiencies, leading to a build-up of glycosaminoglycans (GAGs) throughout the body. Patients have severely shortened lifespans with a wide range of symptoms including inflammation, bone and joint, cardiac, respiratory and neurological disease. Current treatment approaches for MPS disorders revolve around two main strategies.
View Article and Find Full Text PDFMucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS.
View Article and Find Full Text PDFMucopolysaccharidosis type II (Hunter Syndrome) is a rare, x-linked recessive, progressive, multi-system, lysosomal storage disease caused by the deficiency of iduronate-2-sulfatase (IDS), which leads to the pathological storage of glycosaminoglycans in nearly all cell types, tissues and organs. The condition is clinically heterogeneous, and most patients present with a progressive, multi-system disease in their early years. This article outlines the pathology of the disorder and current treatment strategies, including a detailed review of haematopoietic stem cell transplant outcomes for MPSII.
View Article and Find Full Text PDFMucopolysaccharidoses are rare paediatric lysosomal storage disorders, characterised by accumulation of glycosaminoglycans within lysosomes. This is caused by deficiencies in lysosomal enzymes involved in degradation of these molecules. Dependent on disease, progressive build-up of sugars may lead to musculoskeletal abnormalities and multi-organ failure, and in others, to cognitive decline, which is still a challenge for current therapies.
View Article and Find Full Text PDFThe majority of patients affected with lysosomal storage disorders (LSD) exhibit neurological symptoms. For mucopolysaccharidosis type IIIC (MPSIIIC), the major burdens are progressive and severe neuropsychiatric problems and dementia, primarily thought to stem from neurodegeneration. Using the MPSIIIC mouse model, we studied whether clinical manifestations preceding massive neurodegeneration arise from synaptic dysfunction.
View Article and Find Full Text PDFJ Inherit Metab Dis
September 2021
The aim of this study was to evaluate the efficacy of high dose genistein aglycone in Sanfilippo syndrome (mucopolysaccharidosis type III). High doses of genistein aglycone have been shown to correct neuropathology and hyperactive behaviour in mice, but efficacy in humans is uncertain. This was a single centre, double-blinded, randomised, placebo-controlled study with open-label extension phase.
View Article and Find Full Text PDFBackground: Wolman disease is a rare, lysosomal storage disorder in which biallelic variants in the LIPA gene result in reduced or complete lack of lysosomal acid lipase. The accumulation of the substrates; cholesterol esters and triglycerides, significantly impacts cellular function. Untreated patients die within the first 12 months of life.
View Article and Find Full Text PDF