We evaluated the effects on glycemic control and body weight of a GLP1-RA in obese type 2 diabetic patients treated with SGLT2-inhibitors and other hypoglycemic agents and/or insulin, in a real-world setting. A cohort of 583 type 2 diabetic outpatients treated with a SGLT2 inhibitor and/or other anti-diabetic medications were examined. Because patients had suboptimal glycemic control, the GLP1-RA Dulaglutide was added to ongoing medications.
View Article and Find Full Text PDFAim: To describe the development of the AWARE App, a novel web application for the rapid assessment of cardiovascular risk in Type 2 Diabetes Mellitus (T2DM) patients. We also tested the feasibility of using this App in clinical practice.
Methods: Based on 2019 European Society of Cardiology/European Association for the Study of Diabetes criteria for cardiovascular risk stratification in T2DM, the AWARE App classifies patients into very high (VH), high (H) and moderate (M) cardiovascular risk categories.
Eur Arch Psychiatry Clin Neurosci
October 2023
This review article presents select recent studies that form the basis for the development of esmethadone into a potential new drug. Esmethadone is a promising member of the pharmacological class of uncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists that have shown efficacy for major depressive disorder (MDD) and other diseases and disorders, such as Alzheimer's dementia and pseudobulbar affect. The other drugs in the novel class of NMDAR antagonists with therapeutic uses that are discussed for comparative purposes in this review are esketamine, ketamine, dextromethorphan, and memantine.
View Article and Find Full Text PDFRecently, a population of "immature" neurons generated prenatally, retaining immaturity for long periods and finally integrating in adult circuits has been described in the cerebral cortex. Moreover, comparative studies revealed differences in occurrence/rate of different forms of neurogenic plasticity across mammals, the "immature" neurons prevailing in gyrencephalic species. To extend experimentation from laboratory mice to large-brained mammals, including humans, it is important to detect cell markers of neurogenic plasticity in brain tissues obtained from different procedures (e.
View Article and Find Full Text PDFExcessive Ca currents via N-methyl-D-aspartate receptors (NMDARs) have been implicated in many disorders. Uncompetitive NMDAR channel blockers are an emerging class of drugs in clinical use for major depressive disorder (MDD) and other neuropsychiatric diseases. The pharmacological characterization of uncompetitive NMDAR blockers in clinical use may improve our understanding of NMDAR function in physiology and pathology.
View Article and Find Full Text PDFREL-1017 (esmethadone) is a novel N-methyl-D-aspartate receptor (NMDAR) antagonist and promising rapid antidepressant candidate. Using fluorometric imaging plate reader (FLIPR) assays, we studied the effects of quinolinic acid (QA) and gentamicin, with or without L-glutamate and REL-1017, on intracellular calcium ([Ca]) in recombinant cell lines expressing human GluN1-GluN2A, GluN1-GluN2B, GluN1-GluN2C, and GluN1-GluN2D NMDAR subtypes. There were no effects of QA on [Ca] in cells expressing GluN1-GluN2C subtypes.
View Article and Find Full Text PDFREL-1017 (esmethadone, D-methadone) is the opioid-inactive d-isomer of racemic D,L-methadone. REL-1017 may exert antidepressant effects via uncompetitive N-methyl-D-aspartate receptor (NMDAR) channel block. As REL-1017 is expected to exert central nervous system activity, full characterization of its abuse potential is warranted.
View Article and Find Full Text PDFREL-1017 (esmethadone; dextromethadone; (S)-methadone) is the opioid-inactive dextro-isomer of the racemic mixture, (R, S)-methadone. REL-1017 acts as a low affinity, low potency N-methyl-D-aspartate receptor (NMDAR) channel blocker with rapid, robust, and sustained therapeutic effects in patients with major depressive disorder (MDD). Systemic administration of NMDAR blockers may cause transient and reversible pathomorphological alterations in brain cortical neurons characterized by cytoplasmic vacuolization, which are called Olney's lesions, and may also lead to irreversible neuronal necrosis.
View Article and Find Full Text PDFNeural tissue has high metabolic requirements. Following spinal cord injury (SCI), the damaged tissue suffers from a severe metabolic impairment, which aggravates axonal degeneration and neuronal loss. Impaired cellular energetic, tricarboxylic acid (TCA) cycle and oxidative phosphorylation metabolism in neuronal cells has been demonstrated to be a major cause of neural tissue death and regeneration failure following SCI.
View Article and Find Full Text PDFBrain organoids are three-dimensional (3D) self-organized neural structures, which can enable disease modeling and drug screening. However, their use for standardized large-scale drug screening studies is limited by their high batch-to-batch variability, long differentiation time (10-20 weeks), and high production costs. This is particularly relevant when brain organoids are obtained from human induced pluripotent stem cells (iPSCs).
View Article and Find Full Text PDFNeural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli, including environmental enrichment (EE) acting through BDNF-TrkB signaling. We have recently identified NPs in meninges; however, the meningeal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of EE exposure on NP distribution in mouse brain meninges.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF), a neurotrophin widely expressed in the central nervous system, exhibits important effects on neural plasticity. BDNF has been implicated in the mechanism of action of ketamine, a N-methyl-d-aspartic acid receptor (NMDAR) antagonist with rapid anti-depressant effects in humans. REL-1017 (esmethadone), the d-optical isomer of the racemic mixture d-l-methadone, is devoid of clinically relevant opioid activity at doses expected to exert therapeutic NMDAR antagonistic activity in humans.
View Article and Find Full Text PDFImpairment of the GABAergic system has been reported in epilepsy, autism, attention deficit hyperactivity disorder, and schizophrenia. We recently demonstrated that ataxia telangiectasia mutated (ATM) directly shapes the development of the GABAergic system. Here, we show for the first time to our knowledge how the abnormal expression of ATM affects the pathological condition of autism.
View Article and Find Full Text PDFThe atypical chemokine receptor ACKR2, formerly named D6, is a scavenger chemokine receptor with a non-redundant role in the control of inflammation and immunity. The scavenging activity of ACKR2 depends on its trafficking properties, which require actin cytoskeleton rearrangements downstream of a β-arrestin1-Rac1-PAK1-LIMK1-cofilin-dependent signaling pathway. We here demonstrate that in basal conditions, ACKR2 trafficking properties require intact actin and microtubules networks.
View Article and Find Full Text PDFEmerging evidence highlights the several roles that meninges play in relevant brain functions as they are a protective membrane for the brain, produce and release several trophic factors important for neural cell migration and survival, control cerebrospinal fluid dynamics, and embrace numerous immune interactions affecting neural parenchymal functions. Furthermore, different groups have identified subsets of neural progenitors residing in the meninges during development and in the adulthood in different mammalian species, including humans. Interestingly, these immature neural cells are able to migrate from the meninges to the neural parenchyma and differentiate into functional cortical neurons or oligodendrocytes.
View Article and Find Full Text PDFReduced activation of energy metabolism increases adiposity in humans and other mammals. Thus, exploring dietary and molecular mechanisms able to improve energy metabolism is of paramount medical importance because such mechanisms can be leveraged as a therapy for obesity and related disorders. Here, we show that a designer protein-deprived diet enriched in free essential amino acids can ) promote the brown fat thermogenic program and fatty acid oxidation, ) stimulate uncoupling protein 1 (UCP1)-independent respiration in subcutaneous white fat, ) change the gut microbiota composition, and ) prevent and reverse obesity and dysregulated glucose homeostasis in multiple mouse models, prolonging the healthy life span.
View Article and Find Full Text PDFNeural stem cell (NSC) neuronal differentiation requires a metabolic shift towards oxidative phosphorylation. We now show that a branched-chain amino acids-driven, persistent metabolic shift toward energy metabolism is required for full neuronal maturation. We increased energy metabolism of differentiating neurons derived both from murine NSCs and human induced pluripotent stem cells (iPSCs) by supplementing the cell culture medium with a mixture composed of branched-chain amino acids, essential amino acids, TCA cycle precursors and co-factors.
View Article and Find Full Text PDFStem cells can stay quiescent for a long period of time or proliferate and differentiate into multiple lineages. The activity of stage-specific metabolic programs allows stem cells to best adapt their functions in different microenvironments. Specific cellular phenotypes can be, therefore, defined by precise metabolic signatures.
View Article and Find Full Text PDFThe X-linked gene codes for a kinase whose mutations have been associated with a suite of neurodevelopmental disorders generally characterized by early-onset epileptic encephalopathy and severe intellectual disability. The impact of these mutations on CDKL5 functions and brain development remain mainly unknown, although the importance of maintaining the catalytic activity is generally recognized. Since no cure exists for CDKL5 disorders, the demand for innovative therapies is a real emergency.
View Article and Find Full Text PDFAccumulating experimental and clinical evidences over the last decade indicate that GLP-1 analogues have a series of central nervous system and peripheral target tissues actions which are able to significantly influence the liver metabolism. GLP-1 analogues pleiotropic effects proved to be efficacious in T2DM subjects not only reducing liver steatosis and ameliorating NAFLD and NASH, but also in lowering plasma glucose and liver inflammation, improving cardiac function and protecting from kidney dysfunction. While the experimental and clinical data are robust, the precise mechanisms of action potentially involved in these protective multi-target effects need further investigation.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is one of the most common and severe forms of muscular dystrophy. Oxidative myofibre content, muscle vasculature architecture and exercise tolerance are impaired in DMD. Several studies have demonstrated that nutrient supplements ameliorate dystrophic features, thereby enhancing muscle performance.
View Article and Find Full Text PDFCharcoal-stripped serum (CSS) is a well-accepted method to model effects of sex hormones in cell cultures. We have recently shown that human endothelial cells (ECs) fail to growth and to undergo in vitro angiogenesis when cultured in CSS. However, the mechanism(s) underlying the CSS-induced impairment of in vitro EC properties are still unknown.
View Article and Find Full Text PDF