Publications by authors named "Bifani P"

MabR (), a PucR-type transcription factor, plays a crucial role in regulating mycolic acid biosynthesis in . To understand its regulatory mechanisms, we determined the crystal structures of its N-terminal and C-terminal domains. The N-terminal domain adopts a globin-like fold, while the C-terminal domain comprises an α/β GGDEF domain and an all-α effector domain with a helix-turn-helix DNA-binding motif.

View Article and Find Full Text PDF

Florfenicol (Ff) is an antimicrobial agent belonging to the class amphenicol used for the treatment of bacterial infections in livestock, poultry, and aquaculture (animal farming). It inhibits protein synthesis. Ff is an analog of chloramphenicol, an amphenicol compound on the WHO essential medicine list that is used for the treatment of human infections.

View Article and Find Full Text PDF

Testing antimicrobial sensitivity is limited to schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using as a model for , we determined the physiologically significant delayed death effect induced by doxycycline [IC, 1,401 ± 607 nM]. As expected, IC to chloroquine (20.

View Article and Find Full Text PDF

(Kp) infection is an important healthcare concern. The ST258 classical (c)Kp strain is dominant in hospital-acquired infections in North America and Europe, while ST23 hypervirulent (hv)Kp prevails in community-acquired infections in Asia. This study aimed to develop symptomatic mucosal infection models in mice that mirror natural infections in humans to gain a deeper understanding of Kp mucosal pathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Tuberculosis (TB) is caused by the airborne bacteria Mycobacterium tuberculosis (Mtb), and while the role of antibodies in protecting against it isn't fully understood, they may play a crucial part in host defense.
  • This study analyzed the IgG/IgA memory B cell responses in healthy individuals exposed to TB, identifying a human monoclonal antibody that can protect against the disease by targeting a specific virulence factor called LpqH.
  • Findings showed that the protective effects varied depending on the antibody type, with IgG2 and IgA providing the strongest defense, suggesting new avenues for improving TB vaccines and understanding natural immunity.
View Article and Find Full Text PDF

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized Plasmodium cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F.

View Article and Find Full Text PDF

Bacteriophages and phage-derived proteins are a promising class of antibacterial agents that experience a growing worldwide interest. To map ongoing phage research in Singapore and neighboring countries, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore (NTU) and Yong Loo Lin School of Medicine, National University of Singapore (NUS) recently co-organized a virtual symposium on Bacteriophage and Bacteriophage-Derived Technologies, which was attended by more than 80 participants. Topics were discussed relating to phage life cycles, diversity, the roles of phages in biofilms and the human gut microbiome, engineered phage lysins to combat polymicrobial infections in wounds, and the challenges and prospects of clinical phage therapy.

View Article and Find Full Text PDF

The absence of a routine continuous in vitro cultivation method for Plasmodium vivax, an important globally distributed parasite species causing malaria in humans, has restricted investigations to field and clinical sampling. Such a method has recently been developed for the Berok strain of P. cynomolgi, a parasite of macaques that has long been used as a model for P.

View Article and Find Full Text PDF

Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic had caused a severe depletion of the worldwide supply of N95 respirators. The development of methods to effectively decontaminate N95 respirators while maintaining their integrity is crucial for respirator regeneration and reuse. In this study, we systematically evaluated five respirator decontamination methods using vaporized hydrogen peroxide (VHP) or ultraviolet (254 nm wavelength, UVC) radiation.

View Article and Find Full Text PDF

The SARS-CoV-2 outbreak originated in China in late 2019 and has since spread to pandemic proportions. Diagnostics, therapeutics and vaccines are urgently needed. We model the trimeric Spike protein, including flexible loops and all N-glycosylation sites, in order to elucidate accessible epitopes for antibody-based diagnostics, therapeutics and vaccine development.

View Article and Find Full Text PDF

A major obstacle impeding malaria research is the lack of an in vitro system capable of supporting infection through the entire liver stage cycle of the parasite, including that of the dormant forms known as hypnozoites. Primary hepatocytes lose their liver specific functions in long-term in vitro culture. The malaria parasite Plasmodium initiates infection in hepatocyte.

View Article and Find Full Text PDF

The ability to culture pathogenic organisms substantially enhances the quest for fundamental knowledge and the development of vaccines and drugs. Thus, the elaboration of a protocol for the in vitro cultivation of the erythrocytic stages of Plasmodium falciparum revolutionized research on this important parasite. However, for P.

View Article and Find Full Text PDF

Hypnozoites are the liver stage non-dividing form of the malaria parasite that are responsible for relapse and acts as a natural reservoir for human malaria Plasmodium vivax and P. ovale as well as a phylogenetically related simian malaria P. cynomolgi.

View Article and Find Full Text PDF

hypnozoites persist in the liver, cause malaria relapse and represent a major challenge to malaria elimination. Our previous transcriptomic study provided a novel molecular framework to enhance our understanding of the hypnozoite biology (Voorberg-van der Wel A, et al., 2017).

View Article and Find Full Text PDF

Treating infection is challenging due to the potent β-lactamase Bla (Beta-lactamase of . Avibactam is a non-β-lactam, β-lactamase inhibitor shown to inhibit Bla. We tested whether avibactem can render piperacillin effective against .

View Article and Find Full Text PDF

Artemisinin (ART) resistance has spread through Southeast Asia, posing a serious threat to the control and elimination of malaria. ART resistance has been associated with mutations in the kelch-13 () propeller domain. Phenotypically, ART resistance is defined as delayed parasite clearance in patients due to the reduced susceptibility of early ring-stage parasites to the active metabolite of ART dihydroartemisinin (DHA).

View Article and Find Full Text PDF

liver hypnozoites, which cause disease relapse, are widely considered to be the last barrier towards malaria eradication. The biology of this quiescent form of the parasite is poorly understood which hinders drug discovery. We report a comparative transcriptomic dataset of replicating liver schizonts and dormant hypnozoites of the relapsing parasite .

View Article and Find Full Text PDF

Two malaria parasites of Southeast Asian macaques, and , can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired has been found in humans.

View Article and Find Full Text PDF

Malaria control and elimination are threatened by the emergence and spread of resistance to artemisinin-based combination therapies (ACTs). Experimental evidence suggests that when an artemisinin (ART)-sensitive (K13 wild-type) Plasmodium falciparum strain is exposed to ART derivatives such as dihydroartemisinin (DHA), a small population of the early ring-stage parasites can survive drug treatment by entering cell cycle arrest or dormancy. After drug removal, these parasites can resume growth.

View Article and Find Full Text PDF
Article Synopsis
  • Whole genome sequencing (WGS) is becoming a key tool in tuberculosis research, particularly in areas like New York City with less diverse M. tuberculosis populations, simplifying the identification of emerging subpopulations.
  • The study successfully differentiated M. tuberculosis subpopulations in New York City and New Jersey through phylogenomic analysis, revealing previously unknown clusters and specific genetic mutations related to outbreak history and adaptations.
  • Findings suggest that the evolution of M. tuberculosis in NYC has been more influenced by fitness-related genetic changes than by drug resistance mutations, highlighting the importance of certain WGS methods in understanding tuberculosis epidemiology.
View Article and Find Full Text PDF

A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages of drug treatment to probe two antimalarial imidazolopiperazines, KAF156 and GNF179. The latter approach permits the isolation of low-fitness mutants that might otherwise be out-competed during selection.

View Article and Find Full Text PDF

Unlabelled: Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecular weight of 153 kDa, that localizes to the cis-Golgi apparatus of the parasite in both asexual and sexual blood stages. Utilizing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene introduction of 5 variants (L830V, S1076N/I, V1103L, and I1139K), we demonstrate that mutations in pfcarl are sufficient to generate resistance against the imidazolopiperazines in both asexual and sexual blood-stage parasites.

View Article and Find Full Text PDF

The emergence of resistant Mycobacterium tuberculosis (Mtb) infection and the dearth of drugs against tuberculosis have made it imperative to identify and validate novel targets and classes of drugs for treatment. The pyrimidine operon regulatory protein (PyrR), a regulator of de novo pyrimidine synthesis, is an essential enzyme and a probable 5-fluorouracil (5-FU) target in Mtb, with mutations in PyrR attributable to 5-FU resistance. Here we report, for the first time, the co-crystal structure of the PyrR-5-FU complex along with mapping of spontaneous mutational sites of PyrR.

View Article and Find Full Text PDF