Publications by authors named "Bierhals T"

Article Synopsis
  • Researchers studied mutations in a gene that affects a key protein involved in cell signaling, which is linked to severe health issues like impaired immunity in patients.
  • The mutations were found to disrupt normal cell behavior by promoting excessive cell growth and responses to immune signals, specifically T cell receptor stimulation.
  • The mutant protein was shown to interfere with a regulatory protein, leading to heightened activity of important signaling pathways that contribute to cell growth and survival.
View Article and Find Full Text PDF

Together with its β-subunit OSTM1, ClC-7 performs 2Cl/H exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease.

View Article and Find Full Text PDF

Dietary polyunsaturated fatty acids (PUFA) are increasingly recognized for their health benefits, whereas a high production of endogenous fatty acids - a process called de novo lipogenesis (DNL) - is closely linked to metabolic diseases. Determinants of PUFA incorporation into complex lipids are insufficiently understood and may influence the onset and progression of metabolic diseases. Here we show that fatty acid synthase (FASN), the key enzyme of DNL, critically determines the use of dietary PUFA in mice and humans.

View Article and Find Full Text PDF

Biallelic pathogenic variants in the TTC26 gene are known to cause BRENS (biliary, renal, neurological, skeletal) syndrome, an ultra-rare autosomal recessive condition with only few patients published to date. BRENS syndrome is characterized by hexadactyly, severe neonatal cholestasis, and involvement of the brain, heart, and kidney, however the full phenotypic and genotypic spectrum is unknown. Here, we report on a previously undescribed homozygous intronic TTC26 variant (c.

View Article and Find Full Text PDF

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally.

View Article and Find Full Text PDF

Valosin-containing protein (VCP) is an AAA+ ATPase that plays critical roles in multiple ubiquitin-dependent cellular processes. Dominant pathogenic variants in VCP are associated with adult-onset multisystem proteinopathy (MSP), which manifests as myopathy, bone disease, dementia, and/or motor neuron disease. Through GeneMatcher, we identified 13 unrelated individuals who harbor heterozygous VCP variants (12 de novo and 1 inherited) associated with a childhood-onset disorder characterized by developmental delay, intellectual disability, hypotonia, and macrocephaly.

View Article and Find Full Text PDF
Article Synopsis
  • Recessive variants in the NDUFAF3 gene are linked to serious mitochondrial disorders that often lead to severe neurological issues and early death in affected infants.
  • A case study of a 10-year-old patient presents atypical symptoms including neurodevelopmental disorders, progressive exercise intolerance, and high blood lactate levels, identified through advanced genetic analysis revealing specific pathogenic variants in NDUFAF3.
  • Investigations into mitochondrial function showed reduced complex I activity and unusual findings in mitochondrial complex assembly, contributing important new insights into the complexities of NDUFAF3-related mitochondrial diseases and highlighting the variability in patient symptoms.
View Article and Find Full Text PDF

Isolated short stature, defined as short stature without any other abnormalities, is a common heterogeneous condition in children. Exome sequencing identified the homozygous nonsense variant c.1832G>A/p.

View Article and Find Full Text PDF

Purpose: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A.

Methods: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed.

View Article and Find Full Text PDF
Article Synopsis
  • De novo variants contribute significantly to neurodevelopmental disorders (NDDs), but due to their rarity, understanding the full range of symptoms and genetic variations linked to specific genes like KDM6B poses a challenge.
  • The study of 85 individuals with KDM6B variants reveals that cognitive deficits are common, while features like coarse facies and skeletal issues are rare, indicating that existing descriptions may be misleading.
  • Through innovative testing methods and studies on Drosophila, the researchers highlight the critical role of KDM6B in cognitive function and the importance of international collaboration for accurate diagnosis of rare disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Postsynaptic scaffold proteins like Shank are crucial for forming the density at glutamatergic synapses, and mutations in SHANK genes are linked to disorders like autism and intellectual disability.
  • The study identified two new missense mutations in SHANK2 (p.G643R and p.L1800W) that hinder essential functions of Shank proteins, disrupting their ability to bind with other proteins and properly polymerize.
  • These mutations negatively impact the targeting of Shank2 in neurons and affect glutamatergic synaptic transmission, indicating that both PDZ- and SAM-domain interactions are vital for the normal development of brain synapses.
View Article and Find Full Text PDF

Objective: Fibroblast Growth Factor 12 (FGF12) may represent an important modulator of neuronal network activity and has been associated with developmental and epileptic encephalopathy (DEE). We sought to identify the underlying pathomechanism of FGF12-related disorders.

Methods: Patients with pathogenic variants in FGF12 were identified through published case reports, GeneMatcher and whole exome sequencing of own case collections.

View Article and Find Full Text PDF

Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense.

View Article and Find Full Text PDF

FZR1, which encodes the Cdh1 subunit of the anaphase-promoting complex, plays an important role in neurodevelopment by regulating the cell cycle and by its multiple post-mitotic functions in neurons. In this study, evaluation of 250 unrelated patients with developmental and epileptic encephalopathies and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Whole-exome sequencing in 39 patient-parent trios and subsequent targeted sequencing in an additional cohort of 211 patients was performed to identify novel genes involved in developmental and epileptic encephalopathy.

View Article and Find Full Text PDF

Objective: Hereditary spastic paraplegia (HSP) is a highly heterogeneous neurologic disorder characterized by lower-extremity spasticity. Here, we set out to determine the genetic basis of an autosomal dominant, pure, and infantile-onset form of HSP in a cohort of 8 patients with a uniform clinical presentation.

Methods: Trio whole-exome sequencing was used in 5 index patients with infantile-onset pure HSP to determine the genetic cause of disease.

View Article and Find Full Text PDF

Neurological symptoms are frequent and often a leading feature of childhood-onset mitochondrial disorders (MD) but the exact incidence of MD in unselected neuropediatric patients is unknown. Their early detection is desirable due to a potentially rapid clinical decline and the availability of management options. In 491 children with neurological symptoms, a comprehensive diagnostic work-up including exome sequencing was performed.

View Article and Find Full Text PDF

Introduction: Monogenic diseases play an important role in critically ill neonates and infants treated in the intensive care unit. This study aimed to determine the diagnostic yield of whole-exome sequencing (WES) for monogenic diseases and identify phenotypes more likely associated with a genetic etiology.

Methods: From March 2017 to 2020, a comprehensive diagnostic workup including WES in a single academic center was performed in 61 unrelated, critically ill neonates and infants with an unknown underlying disease within the first year of life.

View Article and Find Full Text PDF
Article Synopsis
  • SPTBN1 gene encodes βII-spectrin, crucial for forming networks at plasma membranes, and its deficiency in mice leads to significant neurodevelopmental issues.
  • Heterozygous variants of SPTBN1 were identified in 29 individuals exhibiting a range of developmental challenges, including intellectual disabilities, language delays, and autistic features.
  • These variants weaken βII-spectrin stability and disrupt cellular organization, establishing SPTBN1 as a key contributor to certain neurodevelopmental syndromes.
View Article and Find Full Text PDF

The genetic causes of global developmental delay (GDD) and intellectual disability (ID) are diverse and include variants in numerous ion channels and transporters. Loss-of-function variants in all five endosomal/lysosomal members of the CLC family of Cl channels and Cl/H exchangers lead to pathology in mice, humans, or both. We have identified nine variants in CLCN3, the gene encoding CIC-3, in 11 individuals with GDD/ID and neurodevelopmental disorders of varying severity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the clinical characteristics and genetic variations associated with the DHX30-related neurodevelopmental disorder, especially focusing on new missense variants in the gene.
  • Researchers collected clinical and genetic data from affected individuals via social media, collaboration networks, and analyzed the effects of these variants on cellular functions and development using various experimental models, including zebrafish.
  • Findings revealed that individuals with missense variants presented with severe developmental issues, while those with variants leading to milder haploinsufficiency showed less severe symptoms, suggesting the presence of two distinct clinical subtypes based on the type and location of the genetic variants.
View Article and Find Full Text PDF

TRIO is a Dbl family guanine nucleotide exchange factor (GEF) and an important regulator of neuronal development. Most truncating and missense variants affecting the Dbl homology domain of TRIO are associated with a neurodevelopmental disorder with microcephaly (MIM617061). Recently, de novo missense variants affecting the spectrin repeat region of TRIO were associated with a novel phenotype comprising severe developmental delay and macrocephaly (MIM618825).

View Article and Find Full Text PDF

Background: Canavan disease (CD, MIM # 271900) is a rare and devastating leukodystrophy of early childhood. To identify clinical features that could serve as endpoints for treatment trials, the clinical course of CD was studied retrospectively and prospectively in 23 CD patients. Results were compared with data of CD patients reported in three prior large series.

View Article and Find Full Text PDF

Purpose: To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19.

Methods: Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19 and CDK19.

View Article and Find Full Text PDF

Purpose: Hardikar syndrome (MIM 612726) is a rare multiple congenital anomaly syndrome characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, but with preserved cognition. Only four patients have been reported previously, and none had a molecular diagnosis. Our objective was to identify the genetic basis of Hardikar syndrome (HS) and expand the phenotypic spectrum of this disorder.

View Article and Find Full Text PDF