Recently, approval of tyrosine receptor kinase (TRK) inhibitors by Food and Drug Administration and European Medicines Agency in NTRK fusion-positive cancer types has led to a variety of proposed testing algorithms. In this study, performance of the fully automated Idylla GeneFusion Assay was assessed in a set of clinically relevant cancer types, including glioblastoma, non-small-cell lung cancer, microsatellite instability-positive colorectal cancer, and thyroid carcinoma. Analysis with the Idylla GeneFusion Assay revealed significant differences in baseline RNA expression profile between the different cancer types, which corresponded to both literature and pan-TRK immunohistochemical staining.
View Article and Find Full Text PDFObjectives: In this study, the influence of several key elements of the cytologic sample workflow on DNA and RNA content was evaluated.
Methods: The A549 cell line, patient-derived organoids, and pleural effusions were used to investigate the effect of (1) several collection media and delayed time to processing; (2) cytology specimens; (3) cytologic staining; and (4) formalin-fixed, paraffin-embedded (FFPE) cell block processing on nucleic acid quality and quantity as determined by fragment analyzer, Qubit analysis (Thermo Fisher Scientific), and quantitative polymerase chain reaction-based analysis on the Idylla platform (Biocartis).
Results: Alcohol-based collection media (CytoRich Red [Thermo Fisher Scientific] and EtOH95%) displayed high DNA and RNA preservation capacity, while phosphate-buffered saline and, to a lesser extent, formalin were associated with high RNA quality.
We present a lab-on-a-disk technology for fast identification and quantification of parasite eggs in stool. We introduce a separation and packing method of eggs contained in 1 g of stool, allowing for removal of commonly present solid particles, fat droplets and air bubbles. The separation is based on a combined gravitational and centrifugal flotation, with the eggs guided to a packed monolayer, enabling quantitation and identification of subtypes of the eggs present in a single field of view (FOV).
View Article and Find Full Text PDFBackground: Ov16 serology is considered a reference method for Onchocerca volvulus epidemiological mapping. Given the suboptimal sensitivity of this test and the fact that seroconversion takes more than a year after infection, additional serological tests might be needed to guide onchocerciasis elimination programmes. Recently, two linear epitopes encoded in OvMP-1 and OvMP-23 peptides were introduced as serological markers, but the observed antibody cross-reactivity in samples originating from Onchocerca volvulus non-endemic areas required further investigation.
View Article and Find Full Text PDFIn our previous study, a proteome-wide screen was conducted to identify linear epitopes in this parasite's proteome, resulting in the discovery of three immunodominant motifs. Here, we investigated whether such antigenic peptides were found in proteins that were already known as vaccine candidates and excretome/secretome proteins for Onchocerca volvulus This approach led to the identification of 71 immunoreactive stretches in 46 proteins. A deep-dive into the immunoreactivity profiles of eight vaccine candidates that were chosen as most promising candidates for further development (Ov-CPI-2, Ov-ALT-1, Ov-RAL-2, Ov-ASP-1, Ov-103, Ov-RBP-1, Ov-CHI-1, and Ov-B20), resulted in the identification of a poly-glutamine stretch in Ov-RAL-2 that has properties for use as a serodiagnostic marker for O.
View Article and Find Full Text PDFThree O. volvulus immunogenic peptide sequences recently discovered by peptide microarray were adapted to a lateral flow assay (LFA). The LFA employs gold nanoshells as novel high-contrast reporter nanoparticles and detects a serological response against the 3 peptides, found in OvOC9384, OvOC198, and OvOC5528, respectively.
View Article and Find Full Text PDFDiagnostic tools for the detection of infection with are presently limited to microfilaria detection in skin biopsies and serological assessment using the Ov16 immunoglobulin G4 (IgG4) rapid test, both of which have limited sensitivity. We have investigated the diagnostic performance of a peptide enzyme-linked immunosorbent assay (ELISA) based on immunodominant linear epitopes previously discovered. Peptides that were used in these assays were designated motif peptides (OvMP): OvMP-1 (VSV-EPVTTQET-VSV), OvMP-2 (VSV-KDGEDK-VSV), OvMP-3 (VSV-QTSNLD-VSV), and the combination of the latter two, OvMP-23 (VSV-KDGEDK-VSV-QTSNLD-VSV).
View Article and Find Full Text PDFUnderstanding the immune response upon infection with the filarial nematode Onchocerca volvulus and the mechanisms that evolved in this parasite to evade immune mediated elimination is essential to expand the toolbox available for diagnostics, therapeutics and vaccines development. Using high-density peptide microarrays we scanned the proteome-wide linear epitope repertoire in Cameroonian onchocerciasis patients and healthy controls from Southern Africa which led to the identification of 249 immunodominant antigenic peptides. Motif analysis learned that 3 immunodominant motifs, encompassing 3 linear epitopes, are present in 70, 43, and 31 of these peptides, respectively and appear to be scattered over the entire proteome in seemingly non-related proteins.
View Article and Find Full Text PDFIn this manuscript, a microfluidic detection module, which allows a sensitive readout of biological assays in point-of-care (POC) tests, is presented. The proposed detection module consists of a microfluidic flow cell with an integrated Complementary Metal-Oxide-Semiconductor (CMOS)-based single photon counting optical sensor. Due to the integrated sensor-based readout, the detection module could be implemented as the core technology in stand-alone POC tests, for use in mobile or rural settings.
View Article and Find Full Text PDFVarious proof-of-concept studies have shown the potential of biosensors with a high multiplex detection capability for the readout of DNA microarrays in a lab-on-a-chip. This is particularly interesting for the development of point-of-care genotyping tests, to screen for multiple pathogens and/or antibiotic resistance patterns. In this paper, an assay workflow is presented, suited for the development of novel lab-on-a-chips with an integrated DNA microarray.
View Article and Find Full Text PDFWithin a single infected individual, a virus population can have a high genomic variability. In the case of HIV, several mutations can be present even in a small genomic window of 20-30 nucleotides. For diagnostics purposes, it is often needed to resequence genomic subsets where crucial mutations are known to occur.
View Article and Find Full Text PDFErgot alkaloids are mycotoxins produced by fungi of the genus Claviceps, which infect cereal crops and grasses. The uptake of ergot alkaloid contaminated cereal products can be lethal to humans and animals. For food safety assessment, analytical techniques are currently used to determine the presence of ergot alkaloids in food and feed samples.
View Article and Find Full Text PDFPhage display can be used for the discovery of cellular targets of small molecules in order to unravel their mechanism of action, which is important in the drug discovery field to assess biological effects of drugs at the molecular level and to investigate pharmacokinetic characteristics of drugs in clinical use. The potential of phage display in the drug discovery field is shown by a lot of successful cellular target identifications of drug-like small molecules in the last decade. More recently, phage display was also introduced in environmental science to predict risks of small molecules, like nickel, 17β estradiol and bisphenol A on both environmental and human health, wherefore knowledge about the mechanism of action and cellular targets is essential.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that resist natural degradation and bioaccumulate in nature. Combined with their toxicity, this leads them to cause cancer and other health hazards. Thus, there is a vital need for rapid and sensitive methods to detect PCB residues in food and in the environment.
View Article and Find Full Text PDFChloramphenicol (Cam), although an effective antibiotic, has lost favour due to some fatal side effects. Thus there is an urgent need for rapid and sensitive methods to detect residues in food, feed and environment. We engineered DNA aptamers that recognize Cam as their target, by conducting in vitro selections.
View Article and Find Full Text PDFReporter gene assays are commonly used in applied toxicology to measure the transcription of genes involved in toxic responses. In these reporter gene assays, transgenic cells are used, which contain a promoter-operator region of a gene of interest fused to a reporter gene. The transcription of the gene of interest can be measured by the detection of the reporter protein.
View Article and Find Full Text PDFTo unravel the mechanism of action of chemical compounds, it is crucial to know their cellular targets. A novel in vitro tool that can be used as a fast, simple and cost effective alternative is cDNA phage display. This tool is used in our study to select cellular targets of 17β estradiol (E2).
View Article and Find Full Text PDFEnviron Toxicol Chem
February 2010
In the present study the use of phage display as a screening tool to determine primary toxicological targets was investigated. These primary toxicological targets are the targets in the cell with which a chemical compound initially interacts and that are responsible for consecutive (toxic) effects. Nickel was used as model compound for the present study.
View Article and Find Full Text PDFA sensitive monitoring of contaminants in food and environment, such as chemical compounds, toxins and pathogens, is essential to assess and avoid risks for both, human and environmental health. To accomplish this, there is a high need for sensitive, robust and cost-effective biosensors that make real time and in situ monitoring possible. Due to their high sensitivity, selectivity and versatility, affinity-based biosensors are interesting for monitoring contaminants in food and environment.
View Article and Find Full Text PDF