Publications by authors named "Bidur Paudel"

To become fertile, mammalian sperm are required to undergo capacitation in the female tract or in vitro in defined media containing ions (e.g. HCO3 -, Ca2+, Na+, and Cl-), energy sources (e.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways.

View Article and Find Full Text PDF

microRNAs (miRNAs) are (18-22nt long) noncoding short (s)RNAs that suppress gene expression by targeting the 3' untranslated region of target mRNAs. This occurs through the seed sequence located in position 2-7/8 of the miRNA guide strand, once it is loaded into the RNA induced silencing complex (RISC). G-rich 6mer seed sequences can kill cells by targeting C-rich 6mer seed matches located in genes that are critical for cell survival.

View Article and Find Full Text PDF

6mer seed toxicity is a novel cell death mechanism that kills cancer cells by triggering death induced by survival gene elimination (DISE). It is based on si- or shRNAs with a specific G-rich nucleotide composition in position 2-7 of their guide strand. An arrayed screen of 4096 6mer seeds on two human and two mouse cell lines identified G-rich 6mers as the most toxic seeds.

View Article and Find Full Text PDF

micro(mi)RNAs are short noncoding RNAs that through their seed sequence (pos. 2-7/8 of the guide strand) regulate cell function by targeting complementary sequences (seed matches) located mostly in the 3' untranslated region (3' UTR) of mRNAs. Any short RNA that enters the RNA induced silencing complex (RISC) can kill cells through miRNA-like RNA interference when its 6mer seed sequence (pos.

View Article and Find Full Text PDF

Mammalian sperm have to undergo capacitation to fertilize the egg. At the molecular level, capacitation involves cAMP synthesis, protein kinase A activation, and downstream increase in tyrosine phosphorylation. In addition, during capacitation, mammalian sperm actively generate reactive oxygen species (ROS).

View Article and Find Full Text PDF

Mammalian sperm undergo a series of biochemical and physiological changes collectively known as capacitation in order to acquire the ability to fertilize. Although the increase in phosphorylation associated with mouse sperm capacitation is well established, the identity of the proteins involved in this signaling cascade remains largely unknown. Tandem mass spectrometry (MS/MS) has been used to identify the exact sites of phosphorylation and to compare the relative extent of phosphorylation at these sites.

View Article and Find Full Text PDF

After leaving the testis, sperm undergo two sequential maturational processes before acquiring fertilizing capacity: sperm maturation in the male epididymis, and sperm capacitation in the female reproductive tract. During their transit through the epididymis, sperm experience several maturational changes; the acquisition of motility is one of them. The molecular basis of the regulation of this process is still not fully understood.

View Article and Find Full Text PDF

Physiological changes that endow mammalian sperm with fertilizing capacity are known as sperm capacitation. As part of capacitation, sperm develop an asymmetrical flagellar beating known as hyperactivation and acquire the ability to undergo the acrosome reaction. Together, these processes promote fertilizing competence in sperm.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn02jlnkmg3nnarjofrlgehob1migsb68): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once