Background: Biological control of insect pests is encountering an unprecedented challenge in agricultural systems due to the ongoing rise in carbon dioxide (CO) level. The use of entomopathogenic fungi (EPF) in these systems is gaining increased attention, and EPF as crop endophytes hold the potential for combining insect pest control and yield enhancement of crops, but the effects of increased CO concentration on this interaction are poorly understood. Here, the introduction of endophytic EPF was explored as an alternative sustainable management strategy benefiting crops under elevated CO, using maize (Zea mays), Asian corn borer (Ostrinia furnacalis), and EPF (Beauveria bassiana) to test changes in damage to maize plants from O.
View Article and Find Full Text PDFBrazil has a long history of using biological control and has the largest program in sugarcane agriculture to which a biocontrol program has been applied. This achievement is at least partly due to the utilization of the entomopathogenic fungus . This well-known fungal genus exhibits pathogenicity against a broad range of arthropod hosts and has been used globally as a biocontrol agent.
View Article and Find Full Text PDFIn many fungi, the AreA GATA-type transcription factor mediates nitrogen catabolite repression affecting fungal development and, where applicable, virulence. Here, we investigated the functions of AreA in the fungal entomopathogen and plant endophyte using knockdown of gene expression. The mutants were impaired in nitrogen utilization and showed increased sensitivities to osmotic stressors but increased tolerances to oxidative/hypoxia stresses.
View Article and Find Full Text PDFCharacterizing the association of endophytic insect pathogenic fungi (EIPF) with plants is an important step in order to understand their ecology before using them in biological control programs. Since several methods are available, it is challenging to identify the most appropriate for such investigations. Here, we used two strains of : EF3.
View Article and Find Full Text PDFMetarhizium is a genus of endophytic, insect-pathogenic fungi that is used as a biological control agent. The dual lifestyles of these fungi combine the parasitism of insect pests with the symbiotic association with plant roots. A major class of secreted metabolites by Metarhizium are cyclic depsipeptides called destruxins (DTXs).
View Article and Find Full Text PDFMetarhizium robertsii is an insect pathogen as well as an endophyte, and can antagonize the phytopathogen, Fusarium solani during bean colonization. However, plant immune responses to endophytic colonization by Metarhizium are largely unknown. We applied comprehensive plant hormone analysis, transcriptional expression and stomatal size analysis in order to examine plant immune responses to colonization by Metarhizium and/or Fusarium.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2020
The genus Metarhizium is comprised of a diverse group of common soil fungi that exhibit multifunctional lifestyles with varying degrees of saprotrophic, endophytic, and insect pathogenic modes of nutrient acquisition. The transcriptome of these species is modulated to reflect immediate needs of the fungus and availability of resources-a form of transcriptional plasticity that allows for physiological adaptation to environments with diverse and dynamic exploitable nutrient sources. In this review, we discuss the endophytic, insect pathogenic lifestyles of Metarhizium spp.
View Article and Find Full Text PDFMetarhizium is an insect pathogenic fungus and a plant root symbiont. Here the root association patterns (rhizoplane or endophytic colonization) were analyzed in common beans (Phaseolus vulgaris) and sweet corn (Zea mays) using M. robertsii and M.
View Article and Find Full Text PDFMetarhizium robertsii is a fungus with two lifestyles; it is a plant root symbiont and an insect pathogen. A spontaneously phenotypically degenerated strain of M. robertsii strain ARSEF 2575 (M.
View Article and Find Full Text PDFThe microbial community in the plant rhizosphere is vital to plant productivity and disease resistance. Alterations in the composition and diversity of species within this community could be detrimental if microbes suppressing the activity of pathogens are removed. Species of the insect-pathogenic fungus, Metarhizium, commonly employed as biological control agents against crop pests, have recently been identified as plant root colonizers and provide a variety of benefits (e.
View Article and Find Full Text PDFSeveral ascomycetous insect-pathogenic fungi, including species in the genera Beauveria and Metarhizium, are plant root symbionts/endophytes and are termed as endophytic insect-pathogenic fungi (EIPF). The endophytic capability and insect pathogenicity of Metarhizium are coupled to provide an active method of insect-derived nitrogen transfer to plant hosts via fungal mycelia. In exchange for the insect-derived nitrogen, the plant provides photosynthate to the fungus.
View Article and Find Full Text PDFThe endophytic insect pathogenic fungi (EIPF) Metarhizium promotes plant growth through symbiotic association and the transfer of insect-derived nitrogen. However, little is known about the genes involved in this association and the transfer of nitrogen. In this study, we assessed the involvement of six Metarhizium robertsii genes in endophytic, rhizoplane and rhizospheric colonization with barley roots.
View Article and Find Full Text PDFThe endophytic, insect pathogenic fungus, Metarhizium, exchanges insect-derived nitrogen for photosynthate as part of a symbiotic association similar to well-known mycorrhizal relationships. However, little is known about this nitrogen transfer in soils where there is an abundance of nitrogen and/or carbon. Here, we applied D-glucose and ammonium nitrate to soil to examine the effect on root colonization and transfer of labelled nitrogen (15N) from an insect (injected with 15N-ammonium sulfate) to Metarhizium robertsii, into leaves of the common bean, Phaseolus vulgaris, over the course of 28 days.
View Article and Find Full Text PDFMicrobiology (Reading)
December 2018
Here we assessed the time course of rhizoplane colonization by the endophytic insect pathogenic fungus Metarhizium robertsii. We describe a method of quantifying root colonization of bean plants by M. robertsii using quantitative polymerase chain reaction (qPCR).
View Article and Find Full Text PDFDifferent strains of exhibit a range of polymorphisms in colony phenotypes. These phenotypes range from highly conidiating colonies to colonies that produce relatively more mycelia and few conidia. These different phenotypes are exhibited in infected insects in the soil.
View Article and Find Full Text PDFThe purpose of this study was to identify whether entomopathogenic fungi in the genera Metarhizium and Beauveria were found at ant nests. These fungi have been used in studies of ant social immunity, however experimental conditions used may not normally be representative of that found within ant colonies. The presence of insect pathogenic fungi including Metarhizium and Beauveria was assessed in soils at 22 ant nests in Ontario, Canada.
View Article and Find Full Text PDFThe hyd1/hyd2 hydrophobins are important constituents of the conidial cell wall of the insect pathogenic fungus Beauveria bassiana. This fungus can also form intimate associations with several plant species. Here, we show that inactivation of two Class I hydrophobin genes, hyd1 or hyd2, significantly decreases the interaction of B.
View Article and Find Full Text PDFFungi of the genus are a very versatile model for understanding pathogenicity in insects and their symbiotic relationship with plants. To establish a co-transformation system for the transformation of multiple genes using , we evaluated whether the antibiotic nourseothricin has the same marker selection efficiency as phosphinothricin using separate vectors. Subsequently, in the two vectors containing the nourseothricin and phosphinothricin resistance cassettes were inserted eGFP and mCherry expression cassettes, respectively.
View Article and Find Full Text PDFMetarhizium robertsii occupies a wide array of ecological niches and has diverse lifestyle options (saprophyte, insect pathogen and plant symbiont), that renders it an unusually effective model for studying genetic mechanisms for fungal adaptation. Here over 20,000 M. robertsii T-DNA mutants were screened in order to elucidate genetic mechanism by which M.
View Article and Find Full Text PDFMetarhizium robertsii is a common soil fungus that occupies a specialized ecological niche as an endophyte and an insect pathogen. Previously, we showed that the endophytic capability and insect pathogenicity of Metarhizium are coupled to provide an active method of insect-derived nitrogen transfer to a host plant via fungal mycelia. We speculated that in exchange for this insect-derived nitrogen, the plant would provide photosynthate to the fungus.
View Article and Find Full Text PDFIn this chapter, we explore some of the evolutionary, ecological, molecular genetics, and applied aspects of a subset of insect pathogenic fungi that also have a lifestyle as endophytes and we term endophytic insect pathogenic fungi (EIPF). We focus particularly on Metarhizium spp. and Beauveria bassiana as EIPF.
View Article and Find Full Text PDFThis review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca.
View Article and Find Full Text PDFMetarhizium spp. have recently been shown to be associated with the roots of different plants. Here we evaluated which Metarhizium species were associated with roots of oat (Avena sativa), rye (Secale cereale) and cabbage (Brassica oleracea), common crop plants in Denmark.
View Article and Find Full Text PDFAlmost all plant species form symbioses with soil fungi, and nutrient transfer to plants is largely mediated through this partnership. Studies of fungal nutrient transfer to plants have largely focused on the transfer of limiting soil nutrients, such as nitrogen and phosphorous, by mycorrhizal fungi. However, certain fungal endophytes, such as Metarhizium and Beauveria, are also able to transfer nitrogen to their plant hosts.
View Article and Find Full Text PDFThe study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii.
View Article and Find Full Text PDF