Publications by authors named "Bidhan Pramanick"

According to a World Health Organization (WHO) report, the world has experienced more than 766 million cases of positive SARS-CoV-2 infection and more than 6.9 million deaths due to COVID through May 2023. The WHO declared a pandemic due to the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and the fight against this pandemic is not over yet.

View Article and Find Full Text PDF

This paper presents comprehensive guidelines for the design and analysis of a thin diaphragm that is used in a variety of microsystems, including microphones and pressure sensors. It highlights the empirical relations that can be utilized for the design of thin diaphragm-based microsystems (TDMS). Design guidelines developed through a Finite Element Analysis (FEA) limit the iterative efforts to fabricate TDMS.

View Article and Find Full Text PDF

In Part I, we demonstrated the complete development of a label-free, ultra-low sample volume requiring DNA-based biosensor to detect Ralstonia solanacearum, an aerobic non-spore-forming, Gram-negative, plant pathogenic bacterium, using non-faradaic electrochemical impedance spectroscopy (nf-EIS). We also presented the sensor's sensitivity, specificity, and electrochemical stability. In this article, we highlight the specificity study of the developed DNA-based impedimetric biosensor to detect various strains of R.

View Article and Find Full Text PDF

Herein, we report for the first time the development of a label-free, non-faradaic, and highly sensitive DNA-based impedimetric sensor using micro-sized gold interdigitated electrodes (IDE) to detect a soil-borne agricultural pathogen Ralstonia solanacearum. A universal 30 oligomer single-stranded DNA (ssDNA) probe lpxC4 having specificity towards R. solanacearum is successfully immobilized on the surface of IDE along with mercaptohexanol.

View Article and Find Full Text PDF

Affordable point-of-care (PoC) diagnostic devices enable detection of prostate specific antigen (PSA) in resource limited settings. Despite the advancements in PoC systems, most of the reported methods for PSA detection have unsatisfactory detection limits and are based on labelled assays, requiring multiple reagent flow steps which increases both expenses and inconvenience. Circumventing these constraints, we report here the development and validation of a label free, affordable dielectrophoresis (DEP) based graphene field effect transistor (FET) sensor implemented using coplanar electrodes and integrated uniquely with a compact disc based microfluidic platform along with electronics readout for the estimation of PSA at the point of care.

View Article and Find Full Text PDF

Because carbon is the basic element of all life forms and has been successfully applied as a material for medical applications, it is desirable to investigate carbon for drug delivery applications, as well. In this work, we report the fabrication of a hollow carbon microneedle array with flow channels using a conventional carbon-microelectromechanical system (C-MEMS) process. This process utilizes the scalable and irreversible step of pyrolysis, where prepatterned SU-8 microneedles (precursor) are converted to glassy carbon structures in an inert atmosphere at high temperature (900 °C) while retaining their original shape upon shrinkage.

View Article and Find Full Text PDF

Ascorbic acid (vitamin C) has an essential role in the human body mainly due to its antioxidant function. In this work, metallic silver nanoparticle (AgNP) colloids were used in SERS experiments to detect ascorbic acid in aqueous solution. The AgNPs were synthesized by a green method using potato starch as reducing and stabilizing agent, and water as the solvent.

View Article and Find Full Text PDF

A wide range of carbon sources are available in nature, with a variety of micro-/nanostructure configurations. Here, a novel technique to fabricate long and hollow glassy carbon microfibers derived from human hairs is introduced. The long and hollow carbon structures were made by the pyrolysis of human hair at 900 °C in a N2 atmosphere.

View Article and Find Full Text PDF