The conformational dynamics of the pyrene excimer play a critical role in its unique fluorescence properties. Yet, the influence of multiple local minima on its excited-state behavior remains underexplored. Using a combination of time-dependent density functional theory (TD-DFT) and unsupervised machine learning analysis, we have identified and characterized a diverse set of stable excimer geometries in the first excited state.
View Article and Find Full Text PDFPhotochemical activation by triplet photosensitizers is highly expedient for a green focus society. In this work, we have theoretically probed excited state characteristics of thioxanthone and its derivatives for their triplet harvesting efficiency using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Absorption and triplet energies corroborate well with the available experimental data.
View Article and Find Full Text PDFEngineering the electronic excited state manifolds of organic molecules can give rise to various functional outcomes, including ambient triplet harvesting, that has received prodigious attention in the recent past. Herein, we introduce a modular, non-covalent approach to bias the entire excited state landscape of an organic molecule using tunable 'through-space charge-transfer' interactions with appropriate donors. Although charge-transfer (CT) donor-acceptor complexes have been extensively explored as functional and supramolecular motifs in the realm of soft organic materials, they could not imprint their potentiality in the field of luminescent materials, and it still remains as a challenge.
View Article and Find Full Text PDFThe burgeoning noncovalent interactions between π-acidic aromatic surfaces and anions have been recently shown to have unique functional relevance in anion transport, ion sensing, and organocatalysis. Despite its potential to instigate charge-transfer (CT) states, modulation of the emission features by toggling between the excited states using anion-π interactions is not yet explored. On the other hand, excited states with CT characteristics play an important role in the ambient triplet harvesting of organic chromophores.
View Article and Find Full Text PDFChiral organic phosphors with circularly polarized room-temperature phosphorescence (CPP) provide new prospects to the realm of circularly polarized luminescence (CPL) materials, owing to the long-lived triplet states and persistent emission. Although several molecular designs show efficient room-temperature phosphorescence (RTP), realization of ambient organic CPP remains a formidable challenge. Herein, we introduce a chiral bischromophoric phosphor design to realize ambient CPP emission by appending molecular phosphors to a chiral diaminocyclohexane core.
View Article and Find Full Text PDFMechanochromic luminescent materials, exhibiting a change in luminescence behavior under external stimuli have emerged as one of the promising candidates for upcoming efficient OLEDs. Recently mechanochromic luminescence was reported in a donor-acceptor-donor (D-A-D) triad featuring two phenothiazine units separated by a dibenzo[a,j]phenazine motif. The triad follows different emissive routes ranging from phosphorescence to TADF based on the conformational switching of the D units.
View Article and Find Full Text PDFIntersystem crossing and reverse intersystem crossing (rISC) processes were investigated in a boron-based donor-spiro-acceptor organic chromophore which shows thermally activated delayed fluorescence. Due to the perpendicular arrangement between donor and acceptor moieties, the HOMO and the LUMO are spatially separated, and the compound shows charge transfer (CT) transitions. We found both S and T excited states are CT in nature (i.
View Article and Find Full Text PDFSolution phase room-temperature phosphorescence (RTP) from organic phosphors is seldom realized. Herein we report one of the highest quantum yield solution state RTP (ca. 41.
View Article and Find Full Text PDFTriplet harvesting under ambient conditions plays a crucial role in improving the luminescence efficiency of purely organic molecular systems. This requires elegant molecular designs that can harvest triplets either via room temperature phosphorescence (RTP) or by thermally activated delayed fluorescence (TADF). In this context, here we report a donor core-substituted pyromellitic diimide (acceptor) derivative as an efficient charge-transfer molecular design from the arylene diimide family as a triplet emitter.
View Article and Find Full Text PDFArylene diimide derived ambient organic phosphors are seldom reported despite their potential structural characteristics to facilitate the triplet harvesting. In this context, highly efficient room temperature phosphorescence (RTP) from simple, heavy-atom substituted pyromellitic diimide derivatives in amorphous matrix and crystalline state is reported here. Multiple intermolecular halogen bonding interactions among these phosphors, such as halogen-carbonyl and halogen-π resulted in the modulation of phosphorescence, cyan emission from monomeric state and orange-red emission from its aggregated state, to yield twin RTP emission.
View Article and Find Full Text PDFA simple molecular probe displays highly selective turn-on response toward NO by the unprecedented NO-induced formation of a 1,2,3,4-oxatriazole ring exhibiting no interference from various endogenous biomolecules including DHA, AA, etc. Kinetics of the reactions between NO and the probe provide a mechanistic insight into the formation of 1,2,3,4-oxatriazole which showed that, though initially 1,2,3,4-oxatriazole is formed and extractable in solid form, it exists in equilibrium with the ring opened azide form which ultimately hydrolyzed and converted to carboxylic acid and nitrate. The reaction displays second-order dependence on [NO] and first-order on [Probe].
View Article and Find Full Text PDF