Introduction: Patients with chronic HBV infection (CHI) exhibit defective anti-viral immune-response whose underlying causes still remain unclear. Monocytes act as immune sentinels for pathogens and can regulate immunity via interaction with other immune-cells, apart from differentiating into macrophages. Immune-checkpoint molecules (ICMs) expressed by immune-cells, including monocytes are known to negatively regulate immune-responses.
View Article and Find Full Text PDFIn visceral leishmaniasis, the Type II helper T cell predominance results in B cell modulation and enhancement of anti-leishmanial IgG. However, information regarding its dermal sequel, post-kala-azar dermal leishmaniasis (PKDL), remains limited. Accordingly, this study aimed to elucidate the B cell-mediated antibody-dependent/independent immune profiles of PKDL patients.
View Article and Find Full Text PDFBackground: Membranous nephropathy (MN) is a pattern of glomerular injury. Exact categorization into primary membranous nephropathy (PMN) or secondary membranous nephropathy (SMN) is essential for treatment. An endogenous podocyte antigen, M-type phospholipase A2 receptor (PLA2R) has been discovered to be involved in the pathogenesis of PMN.
View Article and Find Full Text PDFMonocytes play an important role in the control of microbial infection, but monocyte biology during chronic hepatitis B virus (HBV) infection (CHI) remains inadequately studied. We investigated the frequency, phenotype, and functions of monocyte subsets in different phases of CHI, namely, immune tolerance (IT), hepatitis B early antigen (HBeAg)-positive/HBeAg-negative chronic hepatitis B (EP-/EN-CHB, respectively), and inactive carrier (IC), identified factors responsible for their functional alterations, and determined the impact of antiviral therapy on these cells. Flow cytometric analysis indicated that HLA-DR CD14 CD16 classical monocytes were significantly reduced while HLA-DR CD14 CD16 intermediate and HLA-DR CD14 CD16 nonclassical monocytes were expanded in IT and EP-/EN-CHB compared with those in IC and healthy controls (HC).
View Article and Find Full Text PDFBackground: The complement system functions primarily as a first-line host defense against invading microbes, including viruses. However, the interaction of Hepatitis B virus (HBV) with the complement-components during chronic HBV infection remains largely unknown. We investigated the mechanism by which HBV inhibits the formation of cytolytic complement membrane-attack complex (MAC) and studied its impact on MAC-mediated microbicidal activity and disease pathogenesis.
View Article and Find Full Text PDFBackground And Aims: Chronic HBV infection (CHI) is associated with a diverse natural history that includes immune-tolerant (IT), HBeAg-positive chronic hepatitis B (CHB) (EP-CHB), inactive carrier, and HBeAg-negative CHB (EN-CHB) phases. A hallmark of CHI is impairment of HBV-specific T-cell response. Recently, myeloid-derived suppressor cells (MDSCs) have emerged as key regulator of T cells, and their properties are sculpted by their microenvironment.
View Article and Find Full Text PDFIntroduction: There is paucity of data regarding economic burden, employment affection, psychological and nutritional status of CP patients, of non-alcoholic etiology, especially during their periods of stable disease, i.e., without any complications and/or recent endoscopic/surgical interventions.
View Article and Find Full Text PDFDuring chronic hepatitis B (CHB), CD8 T cells down-regulate CD28, the primary co-stimulation molecule for T-cell activation. Diverse functional attributes of CD8CD28 T cells are suggested in various disease contexts. The present study aimed to characterize CD8CD28 T cells in different phases of chronic Hepatitis B virus (HBV) infection (CHI)- Immune-tolerance (IT), Hepatitis B e-antigen-positive CHB (EP-CHB), Inactive carriers (IC) and Hepatitis B e-antigen-negative CHB (EN-CHB), to appraise their contribution in HBV-related disease pathophysiology.
View Article and Find Full Text PDFBackground: CD4 regulatory T-cells (Tregs) expand during chronic hepatitis B virus (HBV) infection and inhibit antiviral immunity, although the underlying mechanism remains largely elusive. Myeloid-derived suppressor cells (MDSC) have been linked with T-cell dysfunction but questions remain regarding their persistence/profile/function in chronically HBV infected patients.
Aim: To characterise MDSC in different phases of chronic HBV infection namely, immune-tolerant (IT), hepatitis B e-antigen-positive chronic hepatitis B (EP-CHB), inactive carriers (IC) and hepatitis B e-antigen-negative chronic hepatitis B (EN-CHB), to investigate their role in Treg induction and evaluate the effect of anti-viral therapy on these cells.
As part of an earlier study aimed at uncovering gene products with roles in defending against latrunculin A (LatA)-induced cytoskeletal perturbations, we identified three members of the oxidative stress response pathway: the Pap1p AP-1-like transcription factor, the Imp1p α-importin, and the Caf5p efflux pump. In this report, we characterize the pathway further and show that Pap1p translocates from the cytoplasm to the nucleus in an Imp1p-dependent manner upon LatA treatment. Moreover, preventing this translocation, through the addition of a nuclear export signal (NES), confers the same characteristic LatA-sensitive phenotype exhibited by Δ cells.
View Article and Find Full Text PDFPLoS One
December 2015
Aims: The impact of co-infection of several hepatitis B virus (HBV) genotypes on the clinical outcome remains controversial. This study has for the first time investigated the distribution of HBV genotypes in the serum and in the intrahepatic tissue of liver cirrhotic (LC) and hepatocellular carcinoma (HCC) patients from India. In addition, the genotype-genotype interplay and plausible mechanism of development of HCC has also been explored.
View Article and Find Full Text PDF