Publications by authors named "Biddut K Sarker"

Biosensors with high selectivity, high sensitivity, and real-time detection capabilities are of significant interest for diagnostic applications as well as human health and performance monitoring. Graphene field-effect transistor (GFET) based biosensors are suitable for integration into wearable sensor technology and can potentially demonstrate the sensitivity and selectivity necessary for real-time detection and monitoring of biomarkers. Previously reported DC-mode GFET biosensors showed a high sensitivity for sensing biomarkers in solutions with a low salt concentration.

View Article and Find Full Text PDF

The extraordinary optical and electronic properties of graphene make it a promising component of high-performance photodetectors. However, in typical graphene-based photodetectors demonstrated to date, the photoresponse only comes from specific locations near graphene over an area much smaller than the device size. For many optoelectronic device applications, it is desirable to obtain the photoresponse and positional sensitivity over a much larger area.

View Article and Find Full Text PDF

High-performance solution-processed short-channel carbon nanotube (CNT) thin film transistors (TFTs) are fabricated using densely aligned arrays of metallic CNTs (m-CNTs) for the source and drain electrodes, while aligned arrays of semiconducting enriched CNTs (s-CNTs) are used as the channel material. The electrical transport measurements at room temperature show that using the m-CNT as the contact for the s-CNT array devices with a 2 μm channel length performed superior to those where the control Pd was the contact. The m-CNT contact devices exhibited a maximum (average) on-conductance of 36.

View Article and Find Full Text PDF

We study the charge carrier injection mechanism across the carbon nanotube (CNT)-organic semiconductor interface using a densely aligned carbon nanotube array as electrode and pentacene as organic semiconductor. The current density-voltage (J-V) characteristics measured at different temperatures show a transition from a thermal emission mechanism at high temperature (above 200 K) to a tunneling mechanism at low temperature (below 200 K). A barrier height of ∼0.

View Article and Find Full Text PDF

We demonstrate assembly of solution-processed semiconducting enriched (99%) single-walled carbon nanotubes (s-SWNTs) in an array with varying linear density via ac dielectrophoresis (DEP) and investigate detailed electronic transport properties of the fabricated devices. We show that (i) the quality of the alignment varies with frequency of the applied voltage and that (ii) by varying the frequency and concentration of the solution, we can control the linear density of the s-SWNTs in the array from 1/μm to 25/μm. The DEP assembled s-SWNT devices provide the opportunity to investigate the transport property of the arrays in the direct transport regime.

View Article and Find Full Text PDF

We fabricated organic field effect transistors (OFETs) by directly growing poly (3-hexylthiophne) (P3HT) crystalline nanowires on solution processed aligned array single walled carbon nanotubes (SWNT) interdigitated electrodes by exploiting strong π-π interaction for both efficient charge injection and transport. We also compared the device properties of OFETs using SWNT electrodes with control OFETs of P3HT nanowires deposited on gold electrodes. Electron transport measurements on 28 devices showed that, compared to the OFETs with gold electrodes, the OFETs with SWNT electrodes have better mobility and better current on-off ratio with a maximum of 0.

View Article and Find Full Text PDF