Psychopharmacology (Berl)
May 2014
Rationale: There are evidences indicating the role of kinins in pathophysiology of traumatic brain injury, but little is known about their action on memory deficits.
Objectives: Our aim was to establish the role of bradykinin receptors B₁ (B₁R) and B₂ (B₂R) on the behavioral, biochemical, and histologic features elicited by moderate lateral fluid percussion injury (mLFPI) in mice.
Methods: The role of kinin B₁ and B₂ receptors in brain damage, neuromotor, and cognitive deficits induced by mLFPI, was evaluated by means of subcutaneous injection of B₂R antagonist (HOE-140; 1 or 10 nmol/kg) or B₁R antagonist (des-Arg9-[Leu8]-bradykinin (DAL-Bk; 1 or 10 nmol/kg) 30 min and 24 h after brain injury.
Neurochem Int
November 2013
Traumatic brain injury (TBI) is a devastating disease that commonly causes persistent mental disturbances and cognitive deficits. Although studies have indicated that overproduction of free radicals, especially superoxide (O2(-)) derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a common underlying mechanism of pathophysiology of TBI, little information is available regarding the role of apocynin, an NADPH oxidase inhibitor, in neurological consequences of TBI. Therefore, the present study evaluated the therapeutic potential of apocynin for treatment of inflammatory and oxidative damage, in addition to determining its action on neuromotor and memory impairments caused by moderate fluid percussion injury in mice (mLFPI).
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major cause of acquired epilepsy, and significant resources are required to develop a better understanding of the pathologic mechanism as targets for potential therapies. Thus, we decided to investigate whether physical exercise after fluid percussion injury (FPI) protects from oxidative and neurochemical alterations as well as from behavioral electroencephalographic (EEG) seizures induced by subeffective convulsive doses of pentylenetetrazol (PTZ; 35 mg/kg). Behavioral and EEG recordings revealed that treadmill physical training increased latency to first clonic and tonic-clonic seizures, attenuated the duration of generalized seizures, and protected against the increase of PTZ-induced Racine scale 5 weeks after neuronal injury.
View Article and Find Full Text PDFAlthough caffeine supplementation has a beneficial effect on people with neurological disorders, its implications for oxidative damage related to seizures are not well documented. Thus the aim of this study was to investigate the effects of two weeks caffeine supplementation (6mg/kg; p.o.
View Article and Find Full Text PDFAlthough the favorable effects of physical exercise in neurorehabilitation after traumatic brain injury (TBI) are well known, detailed pathologic and functional alterations exerted by previous physical exercise on post-traumatic cerebral inflammation have been limited. In the present study, it is showed that fluid percussion brain injury (FPI) induced motor function impairment, followed by increased plasma fluorescein extravasation and cerebral inflammation characterized by interleukin-1β, tumor necrosis factor-α (TNF-α) increase, and decreased IL-10. In addition, myeloperoxidase (MPO) increase and Na⁺,K⁺-ATPase activity inhibition after FPI suggest that the opening of blood-brain barrier (BBB) followed by neurtrophils infiltration and cerebral inflammation may contribute to the failure of selected targets leading to secondary damage.
View Article and Find Full Text PDF