Although direct methanol fuel cells (DMFCs) have been spotlighted in the past decade, their commercialization has been hampered by the poor efficiency of the methanol oxidation reaction (MOR) due to the unsatisfactory performance of currently available electrocatalysts. Herein, we developed a binder-free, copper-based, self-supported electrode consisting of a heterostructure of CuP and mixed copper oxides, i.e.
View Article and Find Full Text PDFTailoring the precise construction of non-precious metals and carbon-based heterogeneous catalysts for electrochemical oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) is crucial for energy conversion applications. Herein, this work reports the composite of Ni doped Fe O (Ni-Fe O ) with mildly oxidized multi-walled CNT (O-CNT) as an outstanding Mott-Schottky catalyst for OER and MOR. O-CNT acts as a co-catalyst which effectively regulates the charge transfer in Ni-Fe O and thus enhances the electrocatalytic performance.
View Article and Find Full Text PDFDesigning an efficient metal-free electrocatalyst for the oxygen reduction reaction (ORR) is a challenging research theme having enormous practical importance in several renewable energy technologies like fuel cell and metal-air batteries. Here we discuss a cost-effective and commercially viable strategy to develop high-performance nitrogen-doped graphene nanoribbon (N-GNR), which is a quasi-"one-dimensional" analogue of graphene. We have selected the N-GNR system to identify the doping-induced variation in the distribution of active catalytic sites experimentally in graphene-based electrocatalysts.
View Article and Find Full Text PDFHerein, we report a single step, anionic surfactant-assisted, low temperature-hydrothermal synthetic strategy of CoO nanoparticles anchored on β-Co(OH) nanosheets which show a low overpotential (295 mV @ 10 mA cm) for the oxygen evolution reaction (OER). They also demonstrate much better kinetic parameters compared to the state-of-the-art RuO. Interestingly, under the OER operational conditions (in alkaline medium), the topotactic transformation of α-Co(OH) to a stable Brucite-like β-Co(OH) phase leads to a synergistic interaction between the β-Co(OH) sheets on the CoO nanoparticles for enhancing the OER electrocatalytic activity.
View Article and Find Full Text PDF