Intervertebral disc degeneration is a primary cause for chronic low back pain, a common health problem with high incidence and the leading cause of disability globally. The early stages of disc degeneration in terms of functional and anatomical abnormalities start from the central nucleus pulposus tissue of the intervertebral disc; hence its regeneration has become a prime concern. A plethora of hydrogel systems have been investigated as nucleus pulposus tissue substitute over the years, with limited clinical translation.
View Article and Find Full Text PDFChronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies.
View Article and Find Full Text PDFThe multifold Sonogashira coupling of a class of aryl halides with arylacetylene in the presence of an equivalent of CsCO has been accomplished using a combination of Pd(CHCN)Cl (0.5 mol %) and cataCXium A (1 mol %) under copper-free and amine-free conditions in a readily available green solvent at room temperature. The protocol was used to transform several aryl halides and alkynes to the corresponding coupled products in good to excellent yields.
View Article and Find Full Text PDFEffective hemorrhage control is indispensable for life-threatening emergencies in defense fields and civilian trauma. During major injuries, hemostatic agents are applied externally to mimic and accelerate the natural hemostasis process. Commercially available topical hemostatic agents are associated with several limitations, , burning sensation, necrosis, futile in severe injuries, and high costs of the products.
View Article and Find Full Text PDFControl promotion and prevention of platelet adhesion are important for various biomedical applications. In the past, surface topography and chemical modifications have been commonly utilized for tailoring the promotion and prevention of platelet adhesion. Recently, lotus-leaf-inspired superhydrophobicity has appeared as an efficient avenue to prevent platelet adhesion.
View Article and Find Full Text PDFHypothesis: Modeling three-dimensional (3D) in vitro culture systems recapitulating spatiotemporal characteristics of native tumor-mass has shown tremendous potential as a pre-clinical tool for drug screening. However, their applications in clinical settings are still limited due to inappropriate recapitulation of tumor topography, culture instability, and poor durability of niche support.
Experiments: Here, we have fabricated a bio-active silk composite scaffold assimilating tunable silk from Bombyx mori and - arginine-glycine-aspartate (RGD) rich silk from Antheraea assama to provide a better 3D-matrix for breast (MCF 7) and liver (HepG2) tumoroids.
Hydrogels have received considerable attention in the field of tissue engineering because of their unique structural and compositional resemblance to the highly hydrated human tissues. In addition, controlled fabrication processes benefit them with desirable physicochemical features for injectability in minimally invasive manner and cell survival within hydrogels. Formulation of biologically active hydrogels with desirable characteristics is one of the prerequisites for successful applications like nucleus pulposus (NP) tissue engineering to address disc degeneration.
View Article and Find Full Text PDFCorrection for 'Simultaneous and controlled release of two different bioactive small molecules from nature inspired single material' by Adil M. Rather et al., J.
View Article and Find Full Text PDFExtended and controlled release of more than a single bioactive molecule, simultaneously, from the same biocompatible matrix is challenging to achieve. However, this is important for combating various severe challenges (drug resistance, improved efficacy, etc.) related to drug delivery.
View Article and Find Full Text PDFThe present study was conducted to develop therapeutically effective controlled release formulation of pirfenidone (PFD) and explore the possibility to reduce the total administered dose and dosing regimen. For this purpose, pH-sensitive biomaterial was prepared by inducing carboxymethyl group on pullulan by Williamson ether synthesis reaction, and further, interpenetrating polymeric network microspheres were prepared by glutaraldehyde-assisted water-in-oil (w/o) emulsion cross-linking method, which showed higher swelling ratio in acidic and basic pH. The formation of microspheres was confirmed by different spectral characterization techniques, and thermal kinetic study indicated the formation of thermally stable microspheres.
View Article and Find Full Text PDFThe aim of present study was to develop controlled release formulation of pirfenidone using acrylamide grafted pullulan. Interpenetrating polymer network (IPN) microspheres were prepared using acrylamide grafted pullulan and PVA utilizing glutaraldehyde assisted water-in-oil emulsion crosslinking method. IPN microspheres were characterized by FTIR, solid state C NMR and XRD spectroscopy.
View Article and Find Full Text PDFThe osteochondral healthcare market is driven by the increasing demand for affordable and biomimetic scaffolds. To meet this demand, silk fibroin (SF) from Bombyx mori and Antheraea assamensis is used to fabricate a biphasic scaffold, with fiber-free and fiber-reinforced phases, stimulating cartilage and bone revival. The fabrication is a facile reproducible process using single polymer (SF), for both phases, designed in a continuous and integrated manner.
View Article and Find Full Text PDFThe aim of present study was to develop a pH responsive rate controlling polymer by acrylamide grafting onto pullulan. Grafting was performed using free radical induced microwave assisted irradiation technique using ceric ammonium nitrate as free radical inducer. Acrylamide grafted pullulan (Aam-g-pull) was characterized by Fourier transform infrared spectroscopy, solid state C nuclear magnetic resonance and field emission scanning electron microscopy.
View Article and Find Full Text PDFRecapitulation of the form and function of complex tissue organization using appropriate biomaterials impacts success in tissue engineering endeavors. The annulus fibrosus (AF) represents a complex, multilamellar, hierarchical structure consisting of collagen, proteoglycans, and elastic fibers. To mimic the intricacy of AF anatomy, a silk protein-based multilayered, disc-like angle-ply construct was fabricated, consisting of concentric layers of lamellar sheets.
View Article and Find Full Text PDFArtificial bioinspired superhydrophobicity, which is generally developed through appropriate optimization of chemistry and hierarchical topography, is being recognized for its immense prospective applications related to environment and healthcare. Nevertheless, the weak interfacial interactions that are associated with the fabrication of such special interfaces often provide delicate biomimicked wettability, and the embedded antifouling property collapses on exposure to harsh and complex aqueous phases and also after regular physical deformations, including bending, creasing, etc. Eventually, such materials with potential antifouling property became less relevant for practical applications.
View Article and Find Full Text PDFThe limited self-regenerative capacity of adult cartilage has steered the upsurge in tissue engineered replacements to combat the problem of osteoarthritis. In the present study, the potential of fiber-reinforced silk composites from mulberry (Bombyx mori) and non-mulberry (Antheraea assamensis) silk has been investigated for cartilage tissue engineering. The fabricated composites were physico-chemically characterized and analyzed for cellular viability, proliferation, extracellular matrix formation and immunocompatibility.
View Article and Find Full Text PDFTunable repeated drug administration is often inevitable in a number of pathological cases. Reloadable 3D matrices for sustained drug delivery are predicted as a prospective avenue to realize this objective. This study was directed toward sonication-induced fabrication of novel reloadable Bombyx mori silk fibroin (SF) (4, 6, and 8 wt %) hydrogel, injected within 3D porous (8 wt %) scaffolds.
View Article and Find Full Text PDF