Publications by authors named "Biaodi Liu"

Emerging evidence has linked the dysregulation of N6-methyladenosine (m6A) modification to inflammation and inflammatory diseases, but the underlying mechanism still needs investigation. Here, we found that high levels of m6A modification in a variety of hyperinflammatory states are p65-dependent because Wilms tumor 1-associated protein (WTAP), a key component of the "writer" complex, is transcriptionally regulated by p65, and its overexpression can lead to increased levels of m6A modification. Mechanistically, upregulated WTAP is more prone to phase separation to facilitate the aggregation of the writer complex to nuclear speckles and the deposition of m6A marks on transcriptionally active inflammatory transcripts, thereby accelerating the proinflammatory response.

View Article and Find Full Text PDF
Article Synopsis
  • Gut microbiota affects host gene expression and physiology through metabolites, particularly influencing the transcriptome and mA epitranscriptome.
  • Research using mouse models reveals that antibiotics can disrupt gut microbiota, leading to significant changes in bile acid metabolism and its related microbiota.
  • The study highlights a link between bile acid metabolism and mA writer protein expression, illustrating how dysbiosis can reshape host gene expression and epitranscriptomic landscapes.
View Article and Find Full Text PDF

Recent years have witnessed rapid progress in the field of epitranscriptomics. Functional interpretation of the epitranscriptome relies on sequencing technologies that determine the location and stoichiometry of various RNA modifications. However, contradictory results have been reported among studies, bringing the biological impacts of certain RNA modifications into doubt.

View Article and Find Full Text PDF

The host microbiome plays an important role in regulating physiology through microbiota-derived metabolites during host-microbiome interactions. However, molecular mechanism underly host-microbiome interactions remains to be explored. In this study, we used as the model to investigate the influence of microbiome and microbiota-derived metabolite sodium butyrate on host transcriptome and metabolome.

View Article and Find Full Text PDF