Publications by authors named "Biao Hao"

Calcium homeostasis imbalance is one of the important pathological mechanisms in heart failure. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a), a calcium ATPase on the sarcoplasmic reticulum in cardiac myocytes, is a myocardial systolic-diastolic Ca2 + homeostasis regulating enzyme that is not only involved in cardiac diastole but also indirectly affects cardiac myocyte contraction. SERCA2a expression was found to be decreased in myocardial tissue in heart failure, however, there are few reports on serum SERCA2a expression in patients with heart failure, and this study was designed to investigate whether serum SERCA2a levels are associated with the occurrence of adverse events after discharge in patients hospitalized with heart failure.

View Article and Find Full Text PDF

Chinese strong-flavor liquor (CSFL), accounting for more than 70% of both Chinese liquor production and sales, was produced by complex fermentation with pit mud. Clostridium kluyveri, an important species coexisted with other microorganisms in fermentation pit mud (FPM), could produce caproic acid, which was subsequently converted to the key CSFL flavor substance ethyl caproate. In this study, we present the first complete genome sequence of C.

View Article and Find Full Text PDF

The proliferation and migration of vascular smooth muscle cells are significant in the development and progression of atherosclerosis and plaque rupture. Metformin is a widely used antidiabetic drug, which has been reported to inhibit cell growth and migration. The antiproliferative and antimigratory effects of metformin have been attributed to 5' adenosine monophosphate-activated protein kinase (AMPK) activation.

View Article and Find Full Text PDF

Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter.

View Article and Find Full Text PDF

Based on fully kinetic model using drift-Maxwellian distributions and taking into account the transverse electrostatic field (TEF), it is shown that the current-filamentation instability (CFI) grows unexpectedly with the plasma temperature. The growth is attributed to the decreasing of the TEF as the plasma becomes hot. In the low-temperature plasma regime where the TEF is strong, it is identified that the TEF can dominate over the thermal pressure in suppressing the CFI.

View Article and Find Full Text PDF

The collisional effects on the current-filamentation instability (CFI) and the two-stream instability (TSI), which appear as a relativistic intense electron beam penetrating into a cold dense plasma, are investigated. It is shown that the growth rate of the CFI mode is first attenuated and then enhanced by the collisional effects as the density ratio of the background plasma to the beam increases. Meanwhile, the maximum CFI growth rate is shifted to the long-wavelength region due to both the bulk plasma density increase and the collisional effects, resulting in larger filaments formation.

View Article and Find Full Text PDF