Publications by authors named "Bianyun Cai"

Bacterial infection and inadequate osseointegration represent significant challenges in the application of titanium (Ti)-based bone implants. Surface modification presents a promising strategy to address these obstacles. Taking advantage of silver ions, black phosphorus nanosheets (BPNs) and polydopamine (PDA), this study developed a versatile platform on the surface of Ti-12Mo-10Zr (TMZ) alloy through a multiple surface modification process, including the anodic oxidation treatment of TMZ alloy, the preparation and addition of silver-loaded BPNs (BPNs/Ag), and the coating with PDA.

View Article and Find Full Text PDF

Histotripsy has been proposed as a non-invasive surgical procedure for clinical use that liquefies the tissue into acellular debris by utilizing the mechanical mechanism of bubbles. Accurate and reliable imaging guidance is essential for successful clinical histotripsy implementation. Nakagami imaging is a promising method to evaluate the microstructural change induced by high intensity focused ultrasound.

View Article and Find Full Text PDF

The repair and reconstruction of large bone defects after bone tumor resection is still a great clinical challenge. At present, orthopedic implant reconstruction is the mainstream treatment for repairing bone defects. However, according to clinical feedback, local tumor recurrence and nonunion of bone graft are common reasons leading to the failure of bone defect repair and reconstruction after bone tumor resection, which seriously threaten the physical and mental health of patients.

View Article and Find Full Text PDF

To address the clinical challenges of modulus mismatch, lack of initial osteointegration and contain toxic elements towards traditional titanium and its alloys with surrounding bone tissue, a new β-type titanium alloy (Ti-12Mo-10Zr) designed by our group will be chosen as dental implant in this proposal due to its excellent properties, e.g. low young's modulus (~ 50.

View Article and Find Full Text PDF

Osteosarcoma is a challenging bone disease which is commonly associated with critically sized bone defects and cancer recurrence. Here, we designed and developed a multifunctional, hierarchical structured bone scaffold which can meet the demanding requirements for osteosarcoma management. The 3D printed TiAlV scaffold with hydrothermally induced TiO/TiP coating can offer a unique photothermal conversion property for bone cancer ablation.

View Article and Find Full Text PDF

Titanium (Ti) and its alloys have been widely used in clinics as preferred materials for bone tissue repair and replacement. However, the lack of biological activity of Ti limits its clinical applications. Surface modification of Ti with bioactive elements has always been a research hotspot.

View Article and Find Full Text PDF

Bioinspired by the morphology of osteoclast-resorbed bone surfaces, we prepared a calcium-doped titanium phosphate (Ca-TiP) coating, which consists of a nanofibrous network, on titanium (Ti) substrate via a simple two-step hydrothermal method, trying to mimic natural bone compositionally and microstructurally. The studies show that the Ca-TiP coating with synergistic features of nanofibrous biomimetic topography and surface chemistry could elicit intensively osteogenic behavior and responses including enhanced cell adhesion, spreading, and proliferation as well as alkaline phosphatase (ALP) activity and up-regulated expression of bone-related genes, which inevitably benefit the formation of new bone and the quality of osseointegration. When the two control groups are compared , the significantly improved new bone formation in the early stage and the much stronger interfacial bonding with the surrounding bone for Ca-TiP coating suggest that Ca-TiP coating modified Ti implants hold great potential for orthopedic and dental applications.

View Article and Find Full Text PDF

In this study, a series of hierarchical micro/nanoscaled titanium phosphate (TiP) coatings possessing various surface morphologies were successfully fabricated on titanium (Ti) discs. The hydrothermal reactions of Ti discs in hydrogen peroxide (HO) and phosphoric acid (HPO) mixed solution yield diverse topographies such as hemispheric clump, cylindrical rod, spherical walnut, micro/nano grass, micro/nano sheet, and fibrous network. And their crystal structures were mainly composed of Ti(HPO)·0.

View Article and Find Full Text PDF

Glioblastoma is currently the most common and lethal brain tumor, so accurate detection and effective therapy at the early glioblastoma stage is crucial. Herein, multifunctional Eu-GdO nanorods (NRs) with good paramagnetic and luminescence properties were fabricated through a hydrothermal method and a subsequent calcination technique, and exhibited good T-weighted magnetic resonance (MR) imaging (r = 5.13 Gd mM s) and cell-luminescence imaging properties.

View Article and Find Full Text PDF

The development of multimodal probes with magnetic resonance imaging (MRI) and intraoperative fluorescence imaging is the most challenging task in the field of tumor diagnosis. Herein, a simple one-pot hydrothermal method is used to prepare Eu-doped Gd(OH) nanorods (Gd(OH):Eu NRs) with good fluorescence and the longitudinal relaxivity r value of 4.78 (Gd mM s).

View Article and Find Full Text PDF