Tissue hypoxia is associated with the development of organ dysfunction and death in critically ill patients commonly captured using blood lactate. The kinetic parameters of serial lactate evaluations are superior at predicting mortality compared with single values. S-adenosylhomocysteine (SAH), which is also associated with hypoxia, was recently established as a useful predictor of septic organ dysfunction and death.
View Article and Find Full Text PDFObjective: Although sepsis and delayed cerebral ischemia (DCI) are severe complications in patients with aneurysmal subarachnoid hemorrhage (aSAH) and share pathophysiological features, their interrelation and additive effect on functional outcome is uncertain. We investigated the association between sepsis and DCI and their cumulative effect on functional outcome in patients with aSAH using current sepsis-3 definition.
Methods: Patients admitted to our hospital between 11/2014 and 11/2018 for aSAH were retrospectively analyzed.
Background: Pneumonia develops frequently after major surgery and polytrauma and thus in the presence of systemic inflammatory response syndrome (SIRS) and organ dysfunction. Immune checkpoints balance self-tolerance and immune activation. Altered checkpoint blood levels were reported for sepsis.
View Article and Find Full Text PDFA common final pathway of pathogenetic mechanisms in septic organ dysfunction and death is a lack or non-utilization of oxygen. Plasma concentrations of lactate serve as surrogates for the oxygen-deficiency-induced imbalance between energy supply and demand. As S-adenosylhomocysteine (SAH) was shown to reflect tissue hypoxia, we compared the ability of SAH versus lactate to predict the progression of inflammatory and septic disease to septic organ dysfunction and death.
View Article and Find Full Text PDFBackground: Sepsis is the leading cause of death in intensive care units (ICUs), and its timely detection and treatment improve clinical outcome and survival. Systemic inflammatory response syndrome (SIRS) refers to the concurrent fulfillment of at least two out of the following four clinical criteria: tachycardia, tachypnea, abnormal body temperature, and abnormal leukocyte count. While SIRS was controversially abandoned from the current sepsis definition, a dynamic SIRS representation still has potential for sepsis prediction and diagnosis.
View Article and Find Full Text PDFInfection can induce granulopoiesis. This process potentially contributes to blood gene classifiers of sepsis in systemic inflammatory response syndrome (SIRS) patients. This study aimed to identify signature genes of blood granulocytes from patients with sepsis and SIRS on intensive care unit (ICU) admission.
View Article and Find Full Text PDFData on sepsis in patients with a subarachnoid hemorrhage (SAH) are scarce. We assessed the impact of different sepsis criteria on the outcome in an SAH cohort. Adult patients admitted to our ICU with a spontaneous SAH between 11/2014 and 11/2018 were retrospectively included.
View Article and Find Full Text PDFStatistical network analyses have become popular in many scientific disciplines, where an important task is to test for differences between two networks. We describe an overall framework for differential network testing procedures that vary regarding (1) the network estimation method, typically based on specific concepts of association, and (2) the network characteristic employed to measure the difference. Using permutation-based tests, our approach is general and applicable to various overall, node-specific or edge-specific network difference characteristics.
View Article and Find Full Text PDFBackground: Sepsis is the leading cause of death in the intensive care unit (ICU). Expediting its diagnosis, largely determined by clinical assessment, improves survival. Predictive and explanatory modelling of sepsis in the critically ill commonly bases both outcome definition and predictions on clinical criteria for consensus definitions of sepsis, leading to circularity.
View Article and Find Full Text PDFBackground: Intestinal ischemia is a common complication with obscure pathophysiology in critically ill patients. Since insufficient delivery of oxygen is discussed, we investigated the influence of oxygen delivery, hemoglobin, arterial oxygen saturation, cardiac index and the systemic vascular resistance index on the development of intestinal ischemia. Furthermore, we evaluated the predictive power of elevated lactate levels for the diagnosis of intestinal ischemia.
View Article and Find Full Text PDF