Publications by authors named "Biancani P"

Background & Aims: Patients with eosinophilic esophagitis (EoE) often become dysphagic from the combination of organ fibrosis and motor abnormalities. We investigated mechanisms of dysphagia, assessing the response of human esophageal fibroblasts (HEFs), human esophageal muscle cells (HEMCs), and esophageal muscle strips to eosinophil-derived products.

Methods: Biopsy specimens were collected via endoscopy from the upper, middle, and lower thirds of the esophagus of 18 patients with EoE and 21 individuals undergoing endoscopy for other reasons (controls).

View Article and Find Full Text PDF

The pathogenesis of gastroesophageal reflux disease (GERD) remains elusive, but recent evidence suggests that early secretion of inflammatory cytokines and chemokines by the mucosa leads to influx of immune cells followed by tissue damage. We previously showed that exposure of esophageal mucosa to HCl causes ATP release, resulting in activation of acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT), the enzyme responsible for the production of platelet-activating factor (PAF). In addition, HCl causes release of IL-8 from the esophageal mucosa.

View Article and Find Full Text PDF

Background: A distinction between symptomatic non-erosive reflux disease (NERD) and erosive esophagitis (EE) patients is supported by the presence of inflammatory response in the mucosa of EE patients, leading to a damage of mucosal integrity. To explore the underlying mechanism of this difference, we assessed inflammatory mediators in mucosal biopsies from EE and NERD patients and compared them with controls.

Methods: Nineteen NERD patients, 15 EE patients, and 16 healthy subjects underwent endoscopy after a 3-week washout from PPI or H(2) antagonists.

View Article and Find Full Text PDF

Background:   Patients with diarrhea and slow transit constipation (STC) have high 5-HT levels. In STC, the high 5-HT levels have been difficult to explain, as 5-HT stimulates peristalsis. Over expression of progesterone (P4) receptors in epithelial and muscle cells of the colon may reconcile this contradiction because P4 decreases SERT and increases 5-HT levels, but their effects are rendered ineffective because of the impaired muscle contraction.

View Article and Find Full Text PDF

In esophageal mucosa, HCl causes TRPV1-mediated release of calcitonin gene-related peptide (CGRP) and substance P (SP) from submucosal neurons and of platelet-activating factor (PAF) from epithelial cells. CGRP and SP release was unaffected by PAF antagonists but reduced by the purinergic antagonist suramin. ATP caused CGRP and SP release from esophageal mucosa, confirming a role of ATP in the release.

View Article and Find Full Text PDF

The following on esophageal disease provides updated information the mucosal defense against acid and acid-pepsin injury; the roles of platelet activating factor, mast cells, proinflammatory cytokines, and chemokines in inflammation; differences and similarities in erosive and nonerosive esophagitis; acid and vanilloid receptors in esophageal mucosa; and bile acid receptors in esophageal epithelium.

View Article and Find Full Text PDF

Background: Females with slow transit constipation (STC) exhibit progesterone receptor (P4R) overexpression in colon muscle that impair their contractility. These studies examined whether these patients have an overexpression of P4R in epithelial cells and whether P4 affects the SERT-5-HT pathway.

Methods: Tissues were obtained from surgical specimens of seven females with STC and six controls.

View Article and Find Full Text PDF

We have focused on understanding the onset of gastroesophageal reflux disease by examining the mucosal response to the presence of acid in the esophageal lumen. Upon exposure to HCl, inflammation of the esophagus begins with activation of the transient receptor potential channel vanilloid subfamily member-1 (TRPV1) in the mucosa, and production of IL-8, substance P (SP), calcitonin gene related peptide (CGRP) and platelet activating factor (PAF). Production of SP and CGRP, but not PAF, is abolished by the neural blocker tetrodotoxin suggesting that SP and CGRP are neurally released and that PAF arises from non neural pathways.

View Article and Find Full Text PDF

Exposure of esophageal mucosa to hydrochloric acid (HCl) is a crucial factor in the pathogenesis of reflux disease. We examined supernatant of HCl-exposed rabbit mucosa for inflammatory mediators enhancing migration of leukocytes and production of H(2)O(2) as an indicator of leukocyte activation. A tubular segment of rabbit esophageal mucosa was tied at both ends to form a sac, which was filled with HCl-acidified Krebs buffer at pH 5 (or plain Krebs buffer as control) and kept oxygenated at 37 degrees C.

View Article and Find Full Text PDF

The contraction of gallbladders (GBs) with cholesterol stones is impaired due to high cholesterol concentrations in caveolae compared with GBs with pigment stones. The reduced contraction is caused by a lower cholecystokinin (CCK)-8 binding to CCK-1 receptors (CCK-1R) due to caveolar sequestration of receptors. We aimed to examine the mechanism of cholesterol-induced sequestration of receptors.

View Article and Find Full Text PDF

Progesterone (P4) inhibits the gastrointestinal muscle contraction by downregulating Galpha(q/11) proteins that mediate contraction, by upregulating Galpha(s) proteins that mediate relaxation, and by altering the pattern of cyclooxygenase (COX) enzymes and prostaglandins. We aimed to examine whether P4 treatment of guinea pigs in vivo affects basal colon motility [basal motility index (MI)] by altering the levels and actions of PGF(2alpha) and PGE(2). Guinea pigs were treated with intramuscular (IM) P4 for 4 days.

View Article and Find Full Text PDF

Background: Transient receptor potential channel vanilloid subfamily member-1 (TRPV1) may play a role in esophageal perception. TRPV1 mRNA and protein expression were examined in the esophageal mucosa of non-erosive reflux disease (NERD) and erosive esophagitis (EE) patients and correlated to esophageal acid exposure.

Methods: Seventeen NERD patients, eight EE patients and 10 healthy subjects underwent endoscopy after a 3-week washout from proton pump inhibitors or H2 antagonists.

View Article and Find Full Text PDF

Gastroesophageal reflux disease (GERD) is one of the most common problems in clinical practice today. It is widely believed that functional and structural abnormalities of the gastroesophageal junction as well as an abnormal exposure to gastroduodenal contents are the main contributors to its pathogenesis. Novel findings of the inflammatory process in GERD suggest a far more complex process involving multifaceted inflammatory mechanisms.

View Article and Find Full Text PDF

The slow transit time of the colon in females with constipation is due to impairment of agonist-induced contraction. The impairment is associated with downregulation of G proteins that mediate contraction and upregulation of Gs proteins that mediate relaxation. These changes are caused by overexpression of progesterone (P4) receptors in the colon, rendering its muscle cells sensitive to physiological P4 concentrations.

View Article and Find Full Text PDF

Transient receptor potential channel, vanilloid subfamily member 1 (TRPV1) receptors were identified in human esophageal squamous epithelial cell line HET-1A by RT-PCR and by Western blot. In fura-2 AM-loaded cells, the TRPV1 agonist capsaicin caused a fourfold cytosolic calcium increase, supporting a role of TRPV1 as a capsaicin-activated cation channel. Capsaicin increased production of platelet activating factor (PAF), an important inflammatory mediator that acts as a chemoattractant and activator of immune cells.

View Article and Find Full Text PDF

To test whether transient receptor potential channel vanilloid subfamily member-1 (TRPV1) mediates acid-induced inflammation in the esophagus, a tubular segment of esophageal mucosa was tied at both ends, forming a sac. The sac was filled with 0.01 N HCl (or Krebs buffer for control) and kept in oxygenated Krebs buffer at 37 degrees C.

View Article and Find Full Text PDF

Gallbladder disease is prevalent during pregnancy. It has been suggested that this complication of pregnancy is attributable to increased bile cholesterol (Ch) induced by estrogens and to gallbladder hypomotility caused by increasing levels of progesterone (P4). Studies on nonpregnant gallbladders have shown that increased levels of bile Ch contribute to both gallstone formation and bile stasis.

View Article and Find Full Text PDF

Colon muscle strips and cells from female patients with slow-transit constipation (STC) exhibit impaired motility, signal transduction abnormalities characterized by downregulation of Gq/11 and upregulation of Gs proteins, decreased cyclooxygenase (COX)-1 and thromboxane (Tx)B2 levels, increased COX-2 and PGE2 levels, and overexpression of progesterone receptors (PGR). Progesterone (P4) treatment of normal cells reproduced these motility and signal transduction abnormalities. The purpose of the study was to examine whether overexpression of PGR-B reproduces these abnormalities by rendering the cells more sensitive to physiological concentrations of P4.

View Article and Find Full Text PDF

The tonic contraction of human and guinea pig gallbladder (GB) is dependent on basal levels of PGE(2) and thromboxane A(2) (TxA(2)). The pathway involved in the genesis of these prostaglandins has not been elucidated. We aimed to examine the source of reactive oxygen species (ROS) and whether they contribute to the genesis of GB tonic contraction by generating basal prostaglandin levels.

View Article and Find Full Text PDF

Background And Aims: Chronic constipation due to slow transit (STC) is more common in female than in male patients. We have previously shown that these gender differences may be due to over expression of progesterone (PG) receptors that alter G protein patterns. We sought to elucidate the mechanisms responsible for the impaired basal colonic motility in female patients with STC.

View Article and Find Full Text PDF

Muscle cells from human gallbladders (GB) with cholesterol stones (ChS) exhibit a defective contraction, excess cholesterol (Ch) in the plasma membrane, and lower binding of CCK-1 receptors. These abnormalities improved after muscle cells were incubated with Ch-free liposomes that remove the excess Ch from the plasma membrane. The present studies were designed to investigate the role of caveolin-3 proteins (Cav-3) in the pathogenesis of these abnormalities.

View Article and Find Full Text PDF

Background & Aims: Gastroesophageal reflux disease is a condition frequently associated with esophagitis and motor abnormalities. Recent evidence suggests that proinflammatory cytokines, such as interleukin (IL)-1beta and IL-6, may be implicated because they reduce esophageal muscle contractility, but these results derive from in vitro or animal models of esophagitis. This study used human esophageal cells and tissues to identify the cellular source of cytokines in human esophagitis investigate whether cytokines can be induced by gastric refluxate, and examine whether esophageal tissue- or cell-derived mediators affect muscle contractility.

View Article and Find Full Text PDF

In a human in vitro model of esophagitis, we investigated the genesis of esophagitis-associated dysmotility by examining HCl-induced production of inflammatory mediators in the mucosa and investigating their effect on esophageal circular muscle. Muscularis propria was removed from organ donors' esophagi, leaving the mucosal tube intact. The tube was tied at both ends, forming a sac, and filled with HCl at pH 4.

View Article and Find Full Text PDF

The gallbladder (GB) maintains tonic contraction modulated by neurohormonal inputs but generated by myogenic mechanisms. The aim of these studies was to examine the role of prostaglandins in the genesis of GB myogenic tension. Muscle strips and cells were treated with prostaglandin agonists, antagonists, cyclooxygenase (COX) inhibitors, and small interference RNA (siRNA).

View Article and Find Full Text PDF

In a cat model of acute experimental esophagitis, resting in vivo lower esophageal sphincter (LES) pressure and in vitro tone are lower than in normal LES, and the LES circular smooth muscle layer contains elevated levels of IL-1beta that decrease the LES tone of normal cats. We now examined the mechanisms of IL-1beta-induced reduction in LES tone. IL-1beta significantly reduced acetylcholine-induced Ca(2+) release in Ca(2+)-free medium, and this effect was partially reversed by catalase, demonstrating a role of H(2)O(2) in these changes.

View Article and Find Full Text PDF