Publications by authors named "Biancamaria Ricci"

Background: In early infected or severe coronavirus disease 2019 (COVID-19) patients, circulating NK cells are consistently reduced, despite being highly activated or exhausted. The aim of this paper was to establish whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (SP) may directly trigger NK cells and through which receptor(s).

Methods: SP-stimulated human NK cells have been evaluated for the expression of activation markers, cytokine release, and cytotoxic activity, as well as for gene expression profiles and NF-kB phosphorylation, and they have been silenced with specific small interfering RNAs.

View Article and Find Full Text PDF

Breast cancer is poorly immunogenic, hence able to evade T cell recognition and respond poorly to immune checkpoint blockade. Breast cancer cells can also evade NK cell-mediated immune surveillance, but the mechanism remains enigmatic. Dickkopf-1 (DKK1) is a Wnt/b-catenin inhibitor, whose levels are increased in breast cancer patients and correlate with reduced overall survival.

View Article and Find Full Text PDF

Poor knowledge is currently available about the biology of Toll-like receptors (TLRs) in natural killer (NK) cells. This is particularly due to the old belief that NK cells are unable to specifically eliminate microbes without presensitization. On the contrary, it has been clearly demonstrated that not only they can be activated through the engagement of Toll-like receptors (TLRs) by microbial molecules, but also that this interaction induces NK cells to release cytokines that, in turn, activate other cells of both innate and adaptive immunity.

View Article and Find Full Text PDF

IgE-mediated diseases represent a highly diversified and multifactorial group of disorders that can deeply impact the patients' quality of life. Currently, allergy immunotherapy (AIT) still remains the gold standard for the management of such pathologies. In this review, we comprehensively examine and discuss how AIT can affect both the innate and the adaptive immune responses at different cell levels and propose timing-scheduled alterations induced by AIT by hypothesizing five sequential phases: after the desensitization of effector non-lymphoid cells and a transient increase of IgE (phase 1), high doses of allergen given by AIT stimulate the shift from type 2/type 3 towards type 1 response (phase 2), which is progressively potentiated by the increase of IFN-γ that promotes the chronic activation of APCs, progressively leading to the hyperexpression of Notch1L (Delta4) and the secretion of IL-12 and IL-27, which are essential to activate IL-10 gene in Th1 and ILC1 cells.

View Article and Find Full Text PDF

The inhibitory receptor interleukin-1 receptor 8 (IL-1R8) has been recently recognized to be expressed also by human natural killer (NK) cells. This study was aimed to design and optimize IL-1R8 silencing conditions in human NK cells to precisely establish the activity of such receptor in these cells. Electroporation of freshly isolated or IL-2-cultured NK cells with small interfering RNA (siRNA), resulted in a marked, even though variable, IL-1R8-silencing.

View Article and Find Full Text PDF

Background: Toll-like receptors (TLRs) are pattern-recognition sensors mainly expressed in innate immune cells that directly recognize conserved pathogen structures (pathogen-associated molecular patterns-PAMPs). Natural killer (NK) cells have been described to express different endosomal TLRs triggered by RNA and DNA sequences derived from both viruses and bacteria. This study was addressed to establish which endosomal TLR could directly mediate NK activation and function after proper stimuli.

View Article and Find Full Text PDF

Overwhelming evidence indicates that excessive stimulation of innate immune receptors of the NOD-like receptor (NLR) family causes significant damage to multiple tissues, yet the role of these proteins in bone metabolism is not well known. Here, we studied the interaction between the NLRP3 and NLRC4 inflammasomes in bone homeostasis and disease. We found that loss of NLRP3 or NLRC4 inflammasome attenuated osteoclast differentiation in vitro.

View Article and Find Full Text PDF

Aberrant NF-κB signaling fuels tumor growth in multiple human cancer types including both hematologic and solid malignancies. Chronic elevated alternative NF-κB signaling can be modeled in transgenic mice upon activation of a conditional NF-κB-inducing kinase (NIK) allele lacking the regulatory TRAF3 binding domain (NT3). Here, we report that expression of NT3 in the mesenchymal lineage with Osterix (Osx/Sp7)-Cre or Fibroblast-Specific Protein 1 (FSP1)-Cre caused subcutaneous, soft tissue tumors.

View Article and Find Full Text PDF

Through the release of hormones, the neuro-endocrine system regulates the immune system function promoting adaptation of the organism to the external environment and to intrinsic physiological changes. Glucocorticoids (GCs) and sex hormones not only regulate immune responses, but also control the hematopoietic stem cell (HSC) differentiation and subsequent maturation of immune cell subsets. During the development of an organism, this regulation has long-term consequences.

View Article and Find Full Text PDF

Checkpoint immunotherapy unleashes T cell control of tumors, but is undermined by immunosuppressive myeloid cells. TREM2 is a myeloid receptor that transmits intracellular signals that sustain microglial responses during Alzheimer's disease. TREM2 is also expressed by tumor-infiltrating macrophages.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are a heterogeneous population of mesenchymal cells supporting tumor progression, whose origin remains to be fully elucidated. Osterix (Osx) is a marker of osteogenic differentiation, expressed in skeletal progenitor stem cells and bone-forming osteoblasts. We report expression in CAFs and by using Osx-cre;TdTomato reporter mice we confirm the presence and pro-tumorigenic function of TdT+ cells in extra-skeletal tumors.

View Article and Find Full Text PDF

Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss.

View Article and Find Full Text PDF

Treatment of multiple myeloma (MM) cells with sublethal doses of genotoxic drugs leads to senescence and results in increased NK cell recognition and effector functions. Herein, we demonstrated that doxorubicin- and melphalan-treated senescent cells display increased expression of IL15, a cytokine involved in NK cell activation, proliferation, and maturation. IL15 upregulation was evident at the mRNA and protein level, both in MM cell lines and malignant plasma cells from patients' bone marrow (BM) aspirates.

View Article and Find Full Text PDF

The NLRP3 inflammasome senses a variety of signals referred to as danger associated molecular patterns (DAMPs), including those triggered by crystalline particulates or degradation products of extracellular matrix. Since some DAMPs confer tissue-specific activation of the inflammasomes, we tested the hypothesis that bone matrix components function as DAMPs for the NLRP3 inflammasome and regulate osteoclast differentiation. Indeed, bone particles cause exuberant osteoclastogenesis in the presence of RANKL, a response that correlates with NLRP3 abundance and the state of inflammasome activation.

View Article and Find Full Text PDF

The mechanisms that regulate the expression of the NKG2D and DNAM-1 activating ligands are only partially known, but it is now widely established that their expression is finely regulated at transcriptional, post-transcriptional and post-translational level, and involve numerous stress pathways depending on the type of ligand, stressor, and cell context. We show that treatment of Multiple Myeloma (MM) cells with sub-lethal doses of Vincristine (VCR), an anticancer drug that inhibits the assembly of microtubules, stimulates the expression of NKG2D and DNAM-1 activating ligands, rendering these cells more susceptible to NK cell-mediated killing. Herein, we focused our attention on the identification of the signaling pathways leading to surface expression of ULBP-1, and to MICA and PVR upregulation on VCR-treated MM cells, both at protein and mRNA levels.

View Article and Find Full Text PDF

Recognition of tumor cells by the immune system is a key step in cancer eradication. Melphalan is an alkylating agent routinely used in the treatment of patients with multiple myeloma (MM), but at therapeutic doses it leads to an immunosuppressive state due to lymphopenia. Here, we used a mouse model of MM to investigate the ability of treatment with low doses of melphalan to modulate natural killer (NK) cell activity, which have been shown to play a major role in the control of MM growth.

View Article and Find Full Text PDF

Despite successful therapeutic options for estrogen receptor-α (ERα)+ breast cancer, resistance to endocrine therapy frequently occurs leading to tumor recurrence. In addition to intrinsic changes in the cancer cells, herein we demonstrate that tumor cell-microenvironment interactions can drive recurrence at specific sites. By using two ERα+ cell lines derived from spontaneous mammary carcinomas in STAT1-/- mice (SSM2, SSM3), we establish that the bone microenvironment offers growth advantage over primary site or lung in the absence of ovarian hormones.

View Article and Find Full Text PDF

Tumor-stroma interactions contribute to tumorigenesis. Tumor cells can educate the stroma at primary and distant sites to facilitate the recruitment of heterogeneous populations of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs). MDSCs suppress T cell responses and promote tumor proliferation.

View Article and Find Full Text PDF

Several lines of evidence show that de novo expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is strongly associated with reduced disease-free survival of patients affected by metastatic melanoma. Previously published investigations report that homophilic interactions between CEACAM1 expressed on natural killer (NK) cells and tumors inhibit the NK cell-mediated killing independently of major histocompatibility complex class I recognition. This biological property can be physiologically relevant in metastatic melanoma because of the increased CEACAM1 expression observed on NK cells from some patients.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed 39 new compounds based on 2-phenylindole, designed to fight cancer, featuring various substituents and bridging groups.
  • The most promising compounds, 33 and 44, effectively inhibited the growth of resistant cancer cell lines and stimulated immune cell activity at low concentrations.
  • These compounds also caused significant cell cycle arrest in HeLa cells and inhibited key cancer signaling pathways, suggesting their potential as anticancer agents.
View Article and Find Full Text PDF

Background: DNAX accessory molecule-1 (DNAM-1) is an activating receptor constitutively expressed by macrophages/dendritic cells and by T lymphocytes and Natural Killer (NK) cells, having an important role in anticancer responses; in this regard, combination therapies able to enhance the expression of DNAM-1 ligands on tumor cells are of therapeutic interest. In this study, we investigated the effect of different nitric oxide (NO) donors on the expression of the DNAM-1 ligand Poliovirus Receptor/CD155 (PVR/CD155) in multiple myeloma (MM) cells.

Methods: Six MM cell lines, SKO-007(J3), U266, OPM-2, RPMI-8226, ARK and LP1 were used to investigate the activity of different nitric oxide donors [DETA-NO and the NO-releasing prodrugs NCX4040 (NO-aspirin) and JS-K] on the expression of PVR/CD155, using Flow Cytometry and Real-Time PCR.

View Article and Find Full Text PDF

Increasing evidence indicates that cancer cell stress induced by chemotherapeutic agents promote antitumor immune responses and contribute to their full clinical efficacy. In this article, we identify the signaling events underlying chemotherapy-induced NKG2D and DNAM-1 ligand expression on multiple myeloma (MM) cells. Our findings indicate that sublethal doses of doxorubicin and melphalan initiate a DNA damage response (DDR) controlling ligand upregulation on MM cell lines and patient-derived malignant plasma cells in Chk1/2-dependent and p53-independent manner.

View Article and Find Full Text PDF

Malignant cells constitutively express Natural killer group 2, member D (NKG2D) or DNAX Accessory Molecule-1 (DNAM-1) ligands, yet they are often unable to trigger a robust cytotoxic cell response. It may be therapeutically useful to implement strategies aimed at increasing the density of NKG2D and DNAM-1 ligands on the surface of cancer cells, endowing them with the capacity to activate potent antitumor natural killer-cell responses.

View Article and Find Full Text PDF