Publications by authors named "Biancaelena Maserti"

Drought is one of the major threats for crop plants among them rice, worldwide. The effects of drought vary depending on the plant growth phase and the occurrence of a previous stress, which can leave a memory of the stress. Stomata guard cells perform many essential functions and are highly responsive to hormonal and environmental stimuli.

View Article and Find Full Text PDF

Drought is a pivotal cause for crop yield reductions. When subjected to recurrent external stimuli, plants can develop memory of stress responses that, eventually, enables improved plant tolerance to environmental changes. In addition, despite causal relationships, these responses may vary according to hierarchical levels of observation.

View Article and Find Full Text PDF

Background: Consumer preference today is for the consumption of functional food and the reduction of chemical preservatives. Moreover, the antimicrobial properties and health-promoting qualities of plant secondary metabolites are well known. Due to forecasted climate changes and increasing human population, agricultural practices for saving water have become a concern.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi are very widespread, forming symbiotic associations with ∼80% of land plant species, including almost all crop plants. These fungi are considered of great interest for their use as biofertilizer in low-input and organic agriculture. In addition to an improvement in plant nutrition, AM fungi have been reported to enhance plant tolerance to important abiotic and biotic environmental conditions, especially to a reduced availability of resources.

View Article and Find Full Text PDF

Combination of biotic and abiotic stress is a major challenge for crop and fruit production. Thus, identification of genes involved in cross-response to abiotic and biotic stress is of great importance for breeding superior genotypes. Lectins are glycan-binding proteins with a functions in the developmental processes as well as in the response to biotic and abiotic stress.

View Article and Find Full Text PDF

The yeast Pichia fermentans DISAABA 726 strain (P. fermentans) is a dimorphic yeast that under different environmental conditions may switch from a yeast-like to pseudohyphal morphology. We hypothesize that exosomes-like vesicles (EV) could mediate this rapid modification.

View Article and Find Full Text PDF

A multidisciplinary approach, involving eco-physiological, morphometric, biochemical and molecular analyses, has been used to study the impact of two different AM fungi, i.e. Funneliformis mosseae and Rhizophagus intraradices, on tomato response to water stress.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated.

View Article and Find Full Text PDF

The Pichia fermentans strain DISAABA 726 is a biofilm-forming yeast that has been proposed as biocontrol agent to control brown rot on apple. How ever, when inoculated on peach, strain 726 shows yeast-like to pseudohyphal transition coupled to a pathogenic behaviour. To identify the proteins potentially involved in such transition process, a comparative proteome analysis of P.

View Article and Find Full Text PDF