Publications by authors named "Bianca van der Werff-van der Vat"

Background: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can improve cardiovascular risk prediction and therapy management.

View Article and Find Full Text PDF

Excess caloric intake leads to metabolic overload and is associated with development of type 2 diabetes (T2DM). Current disease management concentrates on risk factors of the disease such as blood glucose, however with limited success. We hypothesize that normalizing blood glucose levels by itself is insufficient to reduce the development of T2DM and complications, and that removal of the metabolic overload with dietary interventions may be more efficacious.

View Article and Find Full Text PDF

Metabolomics is an emerging, powerful, functional genomics technology that involves the comparative non-targeted analysis of the complete set of metabolites in an organism. We have set-up a robust quantitative metabolomics platform that allows the analysis of 'snapshot' metabolomes. In this study, we have applied this platform for the comprehensive analysis of the metabolite composition of Pseudomonas putida S12 grown on four different carbon sources, i.

View Article and Find Full Text PDF

The value of the multivariate data analysis tools principal component analysis (PCA) and principal component discriminant analysis (PCDA) for prioritizing leads generated by microarrays was evaluated. To this end, Pseudomonas putida S12 was grown in independent triplicate fermentations on four different carbon sources, i.e.

View Article and Find Full Text PDF

A general method is presented for combining mass spectrometry-based metabolomics data. Such data are becoming more and more abundant, and proper tools for fusing these types of data sets are needed. Fusion of metabolomics data leads to a comprehensive view on the metabolome of an organism or biological system.

View Article and Find Full Text PDF