Publications by authors named "Bianca van Groen"

Optimal treatment of infants with many renally cleared drugs must account for maturational differences in renal transporter (RT) activity. Pediatric physiologically-based pharmacokinetic (PBPK) models may incorporate RT activity, but this requires ontogeny profiles for RT activity in children, especially neonates, to predict drug disposition. Therefore, RT expression measurements from human kidney postmortem cortical tissue samples were normalized to represent a fraction of mature RT activity.

View Article and Find Full Text PDF

The human absorption, distribution, metabolism, and excretion (hADME) study is the cornerstone of the clinical pharmacology package for small molecule drugs, providing comprehensive information on the rates and routes of disposition and elimination of drug-related material in humans through the use of C-labeled drug. Significant changes have already been made in the design of the hADME study for many companies, but opportunity exists to continue to re-think both the design and timing of the hADME study in light of the potential offered by newer technologies, that enable flexibility in particular to reducing the magnitude of the radioactive dose used. This paper provides considerations on the variety of current strategies that exist across a number of pharmaceutical companies and on some of the ongoing debates around a potential move to the so called "human first/human only" approach, already adopted by at least one company.

View Article and Find Full Text PDF

: Modeling and simulation is increasingly used to study pediatric pharmacokinetics, but clinical implementation of age-appropriate doses lags behind. Therefore, we aimed to develop model-informed doses using published pharmacokinetic data and a decision framework to adjust dosing guidelines based on these doses, using piperacillin and amikacin in critically ill children as proof of concept. : Piperacillin and amikacin pharmacokinetic models in critically ill children were extracted from literature.

View Article and Find Full Text PDF

The disposition of a drug is driven by various processes, such as drug metabolism, drug transport, glomerular filtration and body composition. These processes are subject to developmental changes reflecting growth and maturation along the paediatric continuum. However, knowledge gaps exist on these changes and their clinical impact.

View Article and Find Full Text PDF

On April 24, 2019, a symposium on Pediatric Pharmacokinetics and Dose Predictions was held as a satellite meeting to the 10th Juvenile Toxicity Symposium. This symposium brought together scientists from academia, industry, and clinical research organizations with the aim to update each other on the current knowledge on pediatric drug development. Through more knowledge on specific ontogeny profiles of drug metabolism and transporter proteins, integrated into physiologically-based pharmacokinetic (PBPK) models, we have gained a more integrated understanding of age-related differences in pharmacokinetics (PKs), Relevant examples were presented during the meeting.

View Article and Find Full Text PDF

Background And Objective: Omeprazole is a proton pump inhibitor that is used in acid suppression therapy in infants. Infants cannot swallow the oral tablets or capsules. Since, infants require a non-standard dose of omeprazole, the granules or tablets are often crushed or suspended in water or sodium bicarbonate, which may destroy the enteric coating.

View Article and Find Full Text PDF

Midazolam is metabolized by the developmentally regulated intestinal and hepatic drug-metabolizing enzyme cytochrome P450 (CYP) 3A4/5. It is frequently administered orally to children, yet knowledge is lacking on the oral bioavailability in term neonates up until 1 year of age. Furthermore, the dispositions of the major metabolites 1-OH-midazolam (OHM) and 1-OH-midazolam-glucuronide (OHMG) after oral administration are largely unknown for the entire pediatric age span.

View Article and Find Full Text PDF

Growth and development affect drug-metabolizing enzyme activity thus could alter the metabolic profile of a drug. Traditional studies to create metabolite profiles and study the routes of excretion are unethical in children due to the high radioactive burden. To overcome this challenge, we aimed to show the feasibility of an absorption, distribution, metabolism, and excretion (ADME) study using a [ C]midazolam microtracer as proof of concept in children.

View Article and Find Full Text PDF

The hepatic influx transporter OATP1B1 (SLCO1B1) plays an important role in the disposition of endogenous substrates and drugs prescribed to children. Alternative splicing increases the diversity of protein products from > 90% of human genes and may be triggered by developmental signals. As concentrations of several endogenous OATP1B1 substrates change during growth and development, with this exploratory study we investigated age-dependent alternative splicing of SLCO1B1 mRNA in 97 postmortem livers (fetus-adolescents).

View Article and Find Full Text PDF

Developmental changes in the biological processes involved in the disposition of drugs, such as membrane transporter expression and activity, may alter the drug exposure and clearance in pediatric patients. Physiologically based pharmacokinetic (PBPK) models take these age-dependent changes into account and may be used to predict drug exposure in children. As a result, this mechanistic-based tool has increasingly been applied to improve pediatric drug development.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated the effectiveness of two urine tests for detecting GHB in emergency department patients, focusing on a new test called DrugCheck GHB Single Test and the Viva-E immunoassay.
  • In a sample of 375 patients with potential drug intoxication, the DrugCheck test showed a specificity of 90% and sensitivity of 72.9%, improving with a higher cutoff value.
  • The Viva-E immunoassay demonstrated significantly higher accuracy, with a specificity of 99.4% and sensitivity of 93.5%, especially when excluding samples with high ethanol levels.
  • Overall, while the DrugCheck test was reliable, the Viva-E immunoassay provided superior performance in detecting GHB in urine samples.
View Article and Find Full Text PDF

Aims: Drug disposition in children may vary from adults due to age-related variation in drug metabolism. Microdose studies present an innovation to study pharmacokinetics (PK) in paediatrics; however, they should be used only when the PK is dose linear. We aimed to assess dose linearity of a [ C]midazolam microdose, by comparing the PK of an intravenous (IV) microtracer (a microdose given simultaneously with a therapeutic midazolam dose), with the PK of a single isolated microdose.

View Article and Find Full Text PDF

Human renal membrane transporters play key roles in the disposition of renally cleared drugs and endogenous substrates, but their ontogeny is largely unknown. Using 184 human postmortem frozen renal cortical tissues (preterm newborns to adults) and a subset of 62 tissue samples, we measured the mRNA levels of 11 renal transporters and the transcription factor pregnane X receptor (PXR) with quantitative real-time polymerase chain reaction, and protein abundance of nine transporters using liquid chromatography tandem mass spectrometry selective reaction monitoring, respectively. Expression levels of p-glycoprotein, urate transporter 1, organic anion transporter 1, organic anion transporter 3, and organic cation transporter 2 increased with age.

View Article and Find Full Text PDF

Background: Hepatic membrane transporters are involved in the transport of many endogenous and exogenous compounds, including drugs. We aimed to study the relation of age with absolute transporter protein expression in a cohort of 62 mainly fetus and newborn samples.

Methods: Protein expressions of BCRP, BSEP, GLUT1, MCT1, MDR1, MRP1, MRP2, MRP3, NTCP, OCT1, OATP1B1, OATP1B3, OATP2B1 and ATP1A1 were quantified with LC-MS/MS in isolated crude membrane fractions of snap-frozen post-mortem fetal and pediatric, and surgical adult liver samples.

View Article and Find Full Text PDF

Human hepatic membrane-embedded transporter proteins are involved in trafficking endogenous and exogenous substrates. Even though impact of transporters on pharmacokinetics is recognized, little is known on maturation of transporter protein expression levels, especially during early life. We aimed to study the protein expression of 10 transporters in liver tissue from fetuses, infants, and adults.

View Article and Find Full Text PDF

The intestinal influx oligopeptide transporter peptide transporter 1 (PEPT1) (SLC15A1) is best known for nutrient-derived di- and tripeptide transport. Its role in drug absorption is increasingly recognized. To better understand the disposition of PEPT1 substrate drugs in young infants, we studied intestinal PEPT1 mRNA expression and tissue localization across the pediatric age range.

View Article and Find Full Text PDF