Bone defects are a global health concern; bone tissue engineering (BTE) is the most promising alternative to reduce patient morbidity and overcome the inherent drawbacks of autograft and allograft bone. Three-dimensional scaffolds are pivotal in this field due to their potential to provide structural support and mimic the natural bone microenvironment. Following an already published protocol, a 3D porous structure consisting of alginate and hydroxyapatite was prepared after a gelation step and a freezing-drying step.
View Article and Find Full Text PDFIn bone regeneration, combining natural polymer-based scaffolds with Bioactive Glasses (BGs) is an attractive strategy to improve the mechanical properties of the structure, as well as its bioactivity and regenerative potential. Methods: For this purpose, a well-studied alginate/hydroxyapatite (Alg/HAp) porous scaffold was enhanced with an experimental bioglass (BGMS10), characterized by a high crystallization temperature and containing therapeutic ions such as strontium and magnesium. This resulted in an improved biological response compared to 45S5 Bioglass, the "gold" standard among BGs.
View Article and Find Full Text PDF