Publications by authors named "Bianca Warmbold"

adjusts to high osmolarity surroundings through the amassing of compatible solutes. It synthesizes the compatible solute glycine betaine from prior imported choline and scavenges many pre-formed osmostress protectants, including glycine betaine, from environmental sources. Choline is imported through the substrate-restricted ABC transporter OpuB and the closely related, but promiscuous, OpuC system, followed by its GbsAB-mediated oxidation to glycine betaine.

View Article and Find Full Text PDF

Accumulation of compatible solutes is a common stress response of microorganisms challenged by high osmolarity; it can be achieved either through synthesis or import. These processes have been intensively studied in , where systems for the production of the compatible solutes proline and glycine betaine have been identified, and in which five transporters for osmostress protectants (Opu) have been characterized. Glycine betaine synthesis relies on the import of choline via the substrate-restricted OpuB system and the promiscuous OpuC transporter and its subsequent oxidation by the GbsAB enzymes.

View Article and Find Full Text PDF

The accumulation of compatible solutes is a common defense of bacteria against the detrimental effects of high osmolarity. Uptake systems for these compounds are cornerstones in cellular osmostress responses because they allow the energy-preserving scavenging of osmostress protectants from environmental sources. is well studied with respect to the import of compatible solutes and its five transport systems (OpuA, OpuB, OpuC, OpuD, and OpuE), for these stress protectants have previously been comprehensively studied.

View Article and Find Full Text PDF

Arsenic, a highly cytotoxic and cancerogenic metalloid, is brought into the biosphere through geochemical sources and anthropogenic activities. A global biogeochemical arsenic biotransformation cycle exists in which inorganic arsenic species are transformed into organoarsenicals, which are subsequently mineralized again into inorganic arsenic compounds. Microorganisms contribute to this biotransformation process greatly and one of the organoarsenicals synthesized and degraded in this cycle is arsenobetaine.

View Article and Find Full Text PDF