Developing an ambulatory assist lung (AAL) for patients who need continuous extracorporeal membrane oxygenation has been associated with several design objectives, including the design of compact components, optimization of gas transfer efficiency, and reduced thrombogenicity. In an effort to address thrombogenicity concerns with currently utilized component biomaterials, a low molecular weight water soluble siloxane-functionalized zwitterionic sulfobetaine (SB-Si) block copolymer was coated on a full-scale AAL device set via a one pot aqueous circulation coating. All device parts including hollow fiber bundle, housing, tubing and cannular were successfully coated with increasing atomic compositions of the SB block copolymer and the coated surfaces showed a significant reduction of platelet deposition while gas exchange performance was sustained.
View Article and Find Full Text PDF