Interest in myelin and its roles in almost all brain functions has been greatly increasing in recent years, leading to countless new studies on myelination, as a dominant process in the development of cognitive functions. Here, we explore the unique role myelin plays in the central nervous system and specifically discuss the results of altered myelination in neurodevelopmental disorders. We present parallel developmental trajectories involving myelination that correlate with the onset of cognitive impairment in neurodevelopmental disorders and discuss the key challenges in the treatment of these chronic disorders.
View Article and Find Full Text PDFGraphene oxide (GO) and reduced graphene oxide (rGO) are both widely applicable and there is a massive production throughout the world which imply in inevitable contamination in the aquatic environment by their wastes. Nevertheless, information about their interaction at the cellular level in fish is still scarce. We investigated the metabolic activity, reactive oxygen species (ROS) production, responses of antioxidant defenses, and total antioxidant capacity (TAC) as well as oxidative stress and DNA integrity in zebrafish liver cells (ZFL) exposed to (0.
View Article and Find Full Text PDFOrganically modified mesoporous silica nanoparticles (MSNs) containing Ir complexes (Ir1, Ir2 and Ir3) were successfully synthesized. These Ir-entrapped MCM41-COOH nanoparticles have shown relevant photophysical characteristics including high efficiency in the photoproduction and delivery of singlet oxygen (O), which is particularly promising for photodynamic therapy (PDT) applications. In vitro tests have evidenced that complex@MCM41-COOH are able to reduce cell proliferation after 10 min of blue-light irradiation in Hep-G2 liver cancer cells.
View Article and Find Full Text PDFGraphene oxide (GO) and reduced graphene oxide (rGO) are carbon-based nanomaterials that have a wide range of applicability. Therefore, it is expected that their residual traces reach the aquatic environment, accumulate, and interact with its different compartments and the biota living in them. The concentration- and time-dependency response to GO and rGO in aquatic organisms are still poorly known.
View Article and Find Full Text PDFThe synthesis and characterization of amino-functionalized mesoporous silica nanoparticles are presented following two different synthetic methods: co-condensation and post-synthesis grafting of 3-aminopropyltriethoxysilane. The amino groups' distribution on the mesoporous silica nanoparticles was evaluated considering the aggregation state of a grafted photosensitizer (Verteporfin) by using spectroscopic techniques. The homogeneous distribution of amino groups within the silica network is a key factor to avoid aggregation during further organic functionalization and to optimize the performance of functionalized silica nanoparticles in biomedical applications.
View Article and Find Full Text PDFAstonishingly, 3-hydroxyisonicotinealdehyde (HINA) is despite its small size a green-emitting push-pull fluorophore in water (QY of 15%) and shows ratiometric emission response to biological relevant pH differences (p ∼ 7.1). Moreover, HINA is the first small-molecule fluorophore reported that possesses three distinctly emissive protonation states.
View Article and Find Full Text PDFIntroduction: Cancer is the second leading cause of death globally and is responsible, where about 1 in 6 deaths in the world. Therefore, there is a need to develop effective antitumor agents that are targeted only to the specific site of the tumor to improve the efficiency of cancer diagnosis and treatment and, consequently, limit the unwanted systemic side effects currently obtained by the use of chemotherapeutic agents. In this context, due to its unique physical and chemical properties of graphene oxide (GO), it has attracted interest in biomedicine for cancer therapy.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is promising for bacterial inactivation since cellular internalization of photosensitizers (PS) is not crucial for the treatment effectiveness. Photoinduced damage in the lipid envelope may already induce microbial inactivation, which requires PS capable of easily penetrating into the membrane. Herein, we report on the insertion of the PS eosin decyl ester (EosDec) into Langmuir films of 1,2-dioleoyl--glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl--glycero-3-phospho-(1'-rac-glycerol) (DOPG), and cardiolipin (CLP) used as mimetic systems of bacterial membranes.
View Article and Find Full Text PDFIn this contribution, we report a novel entirely photocontrolled nanoplatform comprising a binary mixture of pluronic copolymers capable of self-assembling into core-shell micelles and co-entrapping two photoactivatable components: a benzoporphyrin photosensitizer for photodynamic therapy (PDT) and coumarin-photocaged chemotherapeutic agent Chlorambucil (CAB). The resulting supramolecular micellar assembly is about 30 nm in diameter with a polydispersity index <0.1, stable for more than 72 h, and exhibits excellent preservation of the photochemical properties of the two photoresponsive components, even though they are confined within the same host nanocarrier.
View Article and Find Full Text PDFPhotodinamic therapy (PDT) has gained an increasing interest as a new tool to treat skin cancers such as melanoma. This clinical approach take advantage from the combination of a photosensitizer and a specific light wavelength able to induce singlet oxygen production. Mesoporous silica nanoparticles (MSNs) have been widely investigated as drug nanocarriers as their structure and morphology could be customized to produce suitable nanoplatforms enabling high cargo capacity.
View Article and Find Full Text PDFIt was evaluated the properties of the xanthene dyes Erythrosin B, Eosin Y and theirs Methyl, Butyl and Decyl ester derivatives as possible photosensitizers (PS) for photodynamic treatments. The more hydrophobic dyes self-aggregate in water/ethanol solutions above 70% water (vol/vol) in the mixture. In buffered water, these PS were encapsulated in Pluronic polymeric surfactants of P-123 and F-127 by two methodologies: direct addition and the thin-film solid dispersion methods.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2012
Caffeic acid is an ortho-phenol found in vegetable tissues presenting important properties such as carcinogenesis inhibitor, anti-oxidant, anti-viral, anti-inflammatory and anti-rheumatic actions. It was observed that caffeic acid was not degraded in daylight during the adsorption on TiO(2) at pH 4.8.
View Article and Find Full Text PDF