Background: Pneumonia develops frequently after major surgery and polytrauma and thus in the presence of systemic inflammatory response syndrome (SIRS) and organ dysfunction. Immune checkpoints balance self-tolerance and immune activation. Altered checkpoint blood levels were reported for sepsis.
View Article and Find Full Text PDFNatural killer (NK) cells are among the first innate immune cells to arrive at sites of tissue inflammation and regulate the immune response to infection and tumors by the release of cytokines including interferon (IFN)γ. In vitro exposure to the innate cytokines interleukin 15 (IL-15) and IL-12/IL-18 enhances NK cell IFNγ production which, beyond 16 h of culture, was shown to depend on metabolic switching to glycolysis. NK effector responses are, however, rapid by comparison.
View Article and Find Full Text PDFTimely and reliable distinction of sepsis from non-infectious systemic inflammatory response syndrome (SIRS) supports adequate antimicrobial therapy and saves lives but is clinically challenging. Blood transcriptional profiling promises to deliver insights into the pathomechanisms of SIRS and sepsis and to accelerate the discovery of urgently sought sepsis biomarkers. However, suitable reference genes for normalizing gene expression in these disease conditions are lacking.
View Article and Find Full Text PDFAccumulation of myeloid-derived suppressor cells (MDSC) in melanoma microenvironment is supported by chemokine receptor/chemokine signaling. Although different chemokines were suggested to be involved in this process, the role of CCR5 and its ligands is not established. Using a transgenic mouse melanoma model, we found an accumulation of CCR5 MDSCs in melanoma lesions associated with both increased concentrations of CCR5 ligands and tumor progression.
View Article and Find Full Text PDF