Although the standard treatment for periodontal disease is based on scaling and root planing (SRP), the use of antimicrobial photodynamic therapy (aPDT) has been studied as a complement to obtain better clinical results. The purpose of this study was to evaluate the effect of aPDT as adjuncts to SRP, compared with SRP alone, on clinical parameters of chronic periodontal patients. Only randomized controlled trials with at least 3-month follow-ups, of SRP alone and in association with aPDT, were included.
View Article and Find Full Text PDFBackground: Periodontal disease (PD) is a chronic inflammatory disease caused by the presence of microbial biofilm. The aim of this study was to evaluate antimicrobial effect of antimicrobial photodynamic therapy (A-PDT) mediated by methylene blue (MB) in monomer form on A. actinomycetemcomitans and P.
View Article and Find Full Text PDFMedicine (Baltimore)
February 2020
Background: The elimination of the pathogenic microorganisms of the periodontal pocket is one of the main points for success in periodontal treatment. The objective of this study is to investigate the clinical and antimicrobial effect of papain-mediated photodynamic therapy in the clinical treatment of periodontal disease.
Methods: Twenty patients with chronic periodontitis will be selected.
Photodiagnosis Photodyn Ther
September 2019
Background: Antimicrobial photodynamic therapy (aPDT) has been investigated as an adjunctive to periodontal treatment but the dosimetry parameters adopted have discrepancies and represent a challenge to measure efficacy. There is a need to understand the clinical parameters required to obtain antimicrobial effects by using aPDT in periodontal pockets. The aim of this study was to investigate parameters relating to the antimicrobial effects of photodynamic therapy in periodontal pockets.
View Article and Find Full Text PDFBackground: Candida albicans is an opportunistic commensal microorganism, often associated with severe infections in immunosuppressed individuals. C. albicans has hexose transporters that may favor the intracellular accumulation of photosensitizer (PS).
View Article and Find Full Text PDFBackground: Dental caries are a multifactorial disease that progressively produces tooth destruction as a result of bacterial colonization of enamel surface, especially Streptococcus mutans. The objective of this work was to investigate the role of glucose in antimicrobial photodynamic therapy (aPDT) on S. mutans.
View Article and Find Full Text PDFBackground: Antimicrobial photodynamic therapy (aPDT) has been used as an adjuvant treatment for periodontitis. It combines a photosensitizer with a light source to induce reactive oxygen species and kill microbial cells. PpNetNI is a protoporphyrin derivative, and it has a chemical binding site at biofilm and great affinity to microbial cells.
View Article and Find Full Text PDF