Phytophthora spp. are the causal agents of gummosis or foot rot, fibrous root rot, and fruit brown rot diseases that affect the roots, trunk, and fruits of citrus trees, causing severe economic losses. This work presents an updated systematic review addressing the defence responses in citrus against Phytophthora and the strategies to manage Phytophthora diseases.
View Article and Find Full Text PDFDrought is one of the most important environmental factor limiting the growth of woody and non woody plants. In the present paper, we aimed to explore the performance of Maclura pomifera under a prolonged drought period followed by re-watering. M.
View Article and Find Full Text PDFPrevious research demonstrated that Pseudomonas chlororaphis subsp. aureofaciens strain M71, a plant growth promoting bacterium (PGPB), exerts beneficial effects on plant metabolism and primes tolerance mechanisms against biotic stresses in tomatoes. We designed an experiment to assess whether root colonization with P.
View Article and Find Full Text PDFPlants are exposed to a broad range of environmental stresses, such as salinity and ozone (O), and survive due to their ability to adjust their metabolism. The aim of this study was to evaluate the physiological and biochemical adjustments adopted by pomegranate (Punica granatum L. cv.
View Article and Find Full Text PDFPunica granatum has a noticeable adaptation to drought stress. The levels of the green leaf volatile trans-2-hexenal increased in response to drought stress suggesting a possible role of this compound in drought stress response in pomegranate. Punica granatum (L.
View Article and Find Full Text PDFBackground: Rootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots. Alterations in protein abundance in citrus roots are crucial for plant adaptation to water deficit. We performed two-dimensional electrophoresis (2-DE) separation followed by LC/MS/MS to assess the proteome responses of the roots of two citrus rootstocks, Rangpur lime (Citrus limonia Osbeck) and 'Sunki Maravilha' (Citrus sunki) mandarin, which show contrasting tolerances to water deficits at the physiological and molecular levels.
View Article and Find Full Text PDFTo understand the genotypic variation of citrus to mild salt stress, a proteomic approach has been carried out in parallel on two citrus genotypes ('Cleopatra' and 'Willow leaf' mandarins), which differ for Na(+) and Cl(-) accumulation, and their cognate autotetraploids (4×). Using two-dimensional electrophoresis approximately 910 protein spots were reproducibly detected in control and salt-stressed leaves of all genotypes. Among them, 44 protein spots showing significant variations at least in one genotype were subjected to mass spectrometry analysis for identification.
View Article and Find Full Text PDFAbnormal angiogenesis is implicated in a number of human diseases and endothelial growth inhibition represents a common approach in tumor therapy. Recently itraconazole, frequently used in humans as antifungal drug, which blocks the biosynthesis of cholesterol, has been found to be antiangiogenic in primary umbilical vein endothelial cells. However, the exact antiangiogenic mechanisms remain largely unknown.
View Article and Find Full Text PDFChitinases are often considered pathogenesis-related proteins since their activity can be induced by viral infections, fungal and bacterial cell wall components, and also by more general sources of stress such as wounding, salicylic acid, ethylene, auxins and cytokinins. In the present study, comparative proteomic analysis showed the defense-related acidic chitinase II to be specifically induced in Citrus clementina leaves infested by the two-spotted spider mite Tetranychus urticae or treated with MeJA. In parallel, changes in the mRNA profiles of two partially homologous chitinase forms were shown by RT-PCR.
View Article and Find Full Text PDF