The increasing demand for sustainable materials in high-value applications, particularly in the automotive industry, has prompted the development of biocomposites based on renewable or recyclable matrices and natural fibers as reinforcements. In this context, this paper aimed to produce composites with improved mechanical and thermal properties (tensile, flexural, and heat deflection temperature) through an optimized process pathway using a biobased polyamide reinforced with short basalt fibers. This study emphasizes the critical impact of fiber length, matrix adhesion, and the variation in matrix properties with increasing fiber content.
View Article and Find Full Text PDFCurrently, biobased epoxy resins derived from plant oils and natural fibers are available on the market and are a promising substitute for fossil-based products. The purpose of this work is to investigate novel lightweight thermoset fiber-reinforced composites with extremely high biobased content. Paying attention to the biobased content, following a cascade pathway, many trials were carried out with different types of resins and hardeners to select the best ones.
View Article and Find Full Text PDF