Publications by authors named "Bianca Cotto"

The spinal cord receives inputs from the cortex via corticospinal neurons (CSNs). While predominantly a contralateral projection, a less-investigated minority of its axons terminate in the ipsilateral spinal cord. We analyzed the spatial and molecular properties of these ipsilateral axons and their post-synaptic targets in mice and found they project primarily to the ventral horn, including directly to motor neurons.

View Article and Find Full Text PDF

Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), lead to the selective degeneration of discrete cell types in the CNS despite the ubiquitous expression of many genes linked to disease. Therapeutic advancement depends on understanding the unique cellular adaptations that underlie pathology of vulnerable cells in the context of disease-causing mutations. Here, we employ bacTRAP molecular profiling to elucidate cell type-specific molecular responses of cortical upper motor neurons in a preclinical ALS model.

View Article and Find Full Text PDF

Of the 37.9 million individuals infected with human immunodeficiency virus type 1 (HIV-1), approximately 50% exhibit HIV-associated neurocognitive disorders (HAND). We and others previously showed that HIV-1 viral RNAs, such as trans-activating response (TAR) RNA, are incorporated into extracellular vesicles (EVs) and elicit an inflammatory response in recipient naïve cells.

View Article and Find Full Text PDF

HIV-1 Tat is known to be released by HIV infected non-neuronal cells in the brain, and after entering neurons, compromises brain homeostasis by impairing pro-survival pathways, thus contributing to the development of HIV-associated CNS disorders commonly observed in individuals living with HIV. Here, we demonstrate that synapsins, phosphoproteins that are predominantly expressed in neuronal cells and play a vital role in modulating neurotransmitter release at the pre-synaptic terminal, and neuronal differentiation become targets for Tat through autophagy and protein quality control pathways. We demonstrate that the presence of Tat in neurons results in downregulation of BAG3, a co-chaperone for heat shock proteins (Hsp70/Hsc70) that is implicated in protein quality control (PQC) processes by eliminating mis-folded and damaged proteins, and selective macroautophagy.

View Article and Find Full Text PDF

HIV-associated neurocognitive disorders prevail in 20-50 percent of infected individuals. Macrophages transmigrate through the blood brain barrier during HIV-1 infection, triggering neuronal dysfunction. HIV-infected macrophages secrete cathepsin B (CATB), and serum amyloid p component (SAPC), inducing neuronal apoptosis by an unknown mechanism.

View Article and Find Full Text PDF

The brain is particularly sensitive to changes in energy supply. Defects in glucose utilization and mitochondrial dysfunction are hallmarks of nearly all neurodegenerative diseases and are also associated with the cognitive decline that occurs as the brain ages. Chronic neuroinflammation driven by glial activation is commonly implicated as a contributing factor to neurodegeneration and cognitive impairment.

View Article and Find Full Text PDF

Astrocytes regulate local cerebral blood flow, maintain ion and neurotransmitter homeostasis, provide metabolic support, regulate synaptic activity, and respond to brain injury, insults, and infection. Because of their abundance, extensive connectivity, and multiple roles in the brain, astrocytes are intimately involved in normal functioning of the CNS and their dysregulation can lead to neuronal dysfunction. In normal aging, decreased biological functioning and reduced cognitive abilities are commonly experienced in individuals free of overt neurological disease.

View Article and Find Full Text PDF

The molecular substrates underlying cocaine reinforcement and addiction have been studied for decades, with a primary focus on signaling molecules involved in modulation of neuronal communication. Brain-derived neurotrophic factor (BDNF) is an important signaling molecule involved in neuronal dendrite and spine modulation. Methyl CpG binding protein 2 (MeCP2) binds to the promoter region of BDNF to negatively regulate its expression and cocaine can recruit MeCP2 to alter the expression of genes such as BDNF that are involved in synaptic plasticity.

View Article and Find Full Text PDF

The emergence of >300 serovars of Leptospira confounded the use of generalized bacterin, the whole cell lysate, as vaccines to control leptospirosis. Because of substantial genetic and geographic heterogeneity among circulating serovars, one vaccine strain per serovar cannot be efficacious against all the serovars. We have performed heterologous DNA prime-protein boost vaccination challenge studies in hamsters using in vivo expressed, leptospiral recombinase A (RecA) and flagellar hook associated protein (FliD).

View Article and Find Full Text PDF

Calcium (Ca) dynamics and oxidative signaling control mitochondrial bioenergetics in the central nervous system, where astrocytes are a major energy source for neurons. Cocaine use exacerbates HIV-associated neurocognitive disorders, but little is known about disruptions in astrocyte metabolism in this context. Our data show that the HIV protein Tat and cocaine induce a metabolic switch from glucose to fatty acid oxidation in astrocytes, thereby limiting lactate transport to neurons.

View Article and Find Full Text PDF

Cholesterol synthesis and clearance by astrocytes are tightly regulated to maintain constant levels within the brain. In this context, liver X receptors (LXRs) are the master regulators of cholesterol homeostasis in the central nervous system (CNS). Increasing levels of cholesterol in astrocytes trigger LXR activation leading to the transcription of target genes involved in cholesterol trafficking and efflux, including apolipoprotein E, cytochrome P450 enzymes, sterol regulatory binding protein, and several ATP-binding cassette transporter proteins.

View Article and Find Full Text PDF

Introduction: Progressive multifocal leukoencephalopathy (PML) is a debilitating demyelinating disease of the CNS caused by the infection and destruction of glial cells by JC virus (JCV) and is an AIDS-defining disease. Infection with JCV is common and most people acquire antibodies early in life. After initial infection, JCV remains in an asymptomatic persistent state and can be detected by PCR in many tissues including brain.

View Article and Find Full Text PDF