Publications by authors named "Bianca Ciui"

Background: Saliva has been recently proposed as an alternative to classic biofluid analyses due to both availability and reliability regarding the evaluation of various biomarkers. Biosensors have been designed for the assessment of a wide spectrum of compounds, aiding in the screening, diagnosis, and monitoring of pathologies and treatment efficiency. This literature review aims to present the development in the biosensors research and their utility using salivary assessment.

View Article and Find Full Text PDF

The development of robotic sensors that mimic the human sensing capabilities is critical for the interaction and cognitive abilities of modern robots. Though robotic skin with embedded pressure or temperature sensors has received recent attention, robotic chemical sensors have long been unnoticed due to the challenges associated with realizing chemical sensing modalities on robotic platforms. For realizing such chemically sensitive robotic skin, we exploit here the recent advances in wearable chemical sensor technology and flexible electronics, and describe chemical sensing robotic fingers for rapid screening of food flavors and additives.

View Article and Find Full Text PDF

The first example of a fully edible biofuel cell (BFC), based solely on highly biocompatible food materials without any additional external mediators, is described. The new BFC energy-harvesting approach relies on a variety of edible plant/mushroom extract/vegetable oil/charcoal paste biocatalytic electrodes and represents an attractive route for energy harvesting towards ingestible biomedical devices. The edible BFC anode and cathode paste materials consist of biocatalytic rich mushroom, apple, plum and banana plant tissues, along with dietary activated charcoal and water-immiscible olive oil, corn oil, and sesame oil for creating the paste matrix.

View Article and Find Full Text PDF

Early screening of clinically relevant pathogens in the environment is a highly desirable goal in clinical care, providing precious information that will improve patient-care outcomes. In this work, a glove-based electrochemical sensor has been designed for point-of-use screening of Pseudomonas aeruginosa's virulence factors. The methodology used for the elaboration of the fabric platform relied on printing the conductive inks on the index and middle fingers of the glove, with the goal of screening pyocyanin and pyoverdine targets.

View Article and Find Full Text PDF

Wearable bendable bandage-based sensor and a minimally invasive microneedle biosensor are described toward rapid screening of skin melanoma. These wearable electrochemical sensors are capable of detecting the presence of the tyrosinase (TYR) enzyme cancer biomarker in the presence of its catechol substrate, immobilized on the transducer surface. In the presence of the surface TYR biomarker, the immobilized catechol is rapidly converted to benzoquinone that is detected amperometrically, with a current signal proportional to the TYR level.

View Article and Find Full Text PDF

This study demonstrates the first example of completely food-based edible electrochemical sensors. The new edible composite electrodes consist of food materials and supplements serving as the edible conductor, corn, and olive oils as edible binders, vegetables as biocatalysts, and food-based packing sleeves. These edible composite electrodes are systematically characterized for their attractive electrochemical properties, such as potential window, capacitance, redox activity using various electrochemical techniques.

View Article and Find Full Text PDF