Publications by authors named "Bianca Blom"

Background Aims: The success of allogeneic hematopoietic cell transplantation (HCT) as therapy for hematologic conditions is negatively impacted by the occurrence of graft-versus-host disease (GVHD). Tissue damage, caused, for example, by chemotherapy and radiotherapy, is a key factor in GVHD pathogenesis. Innate lymphoid cells (ILCs) are important mediators of tissue repair and homeostasis.

View Article and Find Full Text PDF

Type 3 innate lymphoid cells (ILC3) are important in tissue homeostasis. In the gut, ILC3 repair damaged epithelium and suppress inflammation. In allogeneic hematopoietic cell transplantation (HCT), ILC3 protect against graft-versus-host disease (GvHD), most likely by restoring tissue damage and preventing inflammation.

View Article and Find Full Text PDF

Regeneration of functional naïve T lymphocytes following the onset of human immunodeficiency virus (HIV) infection remains a crucial issue for people living with HIV (PLWH), even when adhering to antiretroviral therapy (ART). Thus far, reports on the impact of HIV-1 infection on the entry of thymic precursors and the egress of functional naïve T lymphocytes to and from the thymus are limited. We examined the impact of HIV-1 on Sphingosine-1-phosphate (S1P) signaling, which governs the egress of functional naïve thymocytes from the thymus to the periphery.

View Article and Find Full Text PDF

Many patients with hematological malignancies, such as acute myeloid leukemia, receive an allogeneic hematopoietic cell transplantation (HCT) to cure their underlying condition. Allogeneic HCT recipients are exposed to various elements during the pre-, peri- and post-transplant period that can disrupt intestinal microbiota, including chemo- and radiotherapy, antibiotics, and dietary changes. The dysbiotic post-HCT microbiome is characterized by low fecal microbial diversity, loss of anaerobic commensals, and intestinal domination, particularly by species, and is associated with poor transplant outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • Disruption of gut bacteria often occurs in patients undergoing allogeneic hematopoietic cell transplantation (HCT), especially those with graft-versus-host disease (GVHD), but donor fecal microbiota transplantation (FMT) can help restore gut diversity and alleviate GVHD symptoms.
  • This study focused on analyzing the fungal community (mycobiota) in the stools of HCT patients with steroid-refractory GVHD and healthy donors, finding significant differences in fungal DNA between the two groups.
  • While the donor's mycobiota varied over time, the study did not find evidence of fungal transfer from donors to recipients, leading to advancements in the methodology for analyzing mycobiota alongside bacteria in future research.
View Article and Find Full Text PDF

Background: Allogeneic hematopoietic cell transplantation (HCT) can be devastating when graft-versus-host disease (GvHD) develops. GvHD is characterized by mucosal inflammation due to breaching of epithelial barriers. Innate lymphoid cells (ILCs) are immune modulatory cells that are important in the maintenance of epithelial barriers, via their production of interleukin (IL)-22 and their T cell suppressive properties.

View Article and Find Full Text PDF

CD4CD25FOXP3 regulatory T (Treg) cells control immunological tolerance. Treg cells are generated in the thymus (tTreg) or in the periphery. Their superior lineage fidelity makes tTregs the preferred cell type for adoptive cell therapy (ACT).

View Article and Find Full Text PDF

Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4 T-cells associated with HTLV-1 infection. In this study, we used the model of immunodeficient NSG mice reconstituted with a functional human immune system (HIS) to investigate early events in HTLV-1 pathogenesis. Upon infection, human T-cells rapidly increased in the blood and lymphoid tissues, particularly CD4CD25 T-cells.

View Article and Find Full Text PDF

Bone marrow stromal cells (BMSCs) play pivotal roles in tissue maintenance and regeneration. Their origins, however, remain incompletely understood. Here we identify rare LNGFR cells in human fetal and regenerative bone marrow that co-express endothelial and stromal markers.

View Article and Find Full Text PDF

Disruption of the intestinal microbiota occurs frequently in allogeneic hematopoietic cell transplantation (allo-HCT) recipients and predisposes them to development of graft-versus-host disease (GvHD). In a prospective, single-center, single-arm study, we investigated the effect of donor fecal microbiota transplantation (FMT) on symptoms of steroid-refractory or steroid-dependent, acute or late-onset acute intestinal GvHD in 15 individuals who had undergone allo-HCT. Study participants received a fecal suspension from an unrelated healthy donor via nasoduodenal infusion.

View Article and Find Full Text PDF
Article Synopsis
  • FOXP3-expressing regulatory T (Treg) cells help maintain immune system balance, with two main types: thymic Treg (tTreg) cells from the thymus and peripheral Treg (pTreg) cells derived from mature T cells.
  • tTreg cells have a stronger commitment to their lineage compared to pTreg cells, making them safer for therapies targeting autoimmune and inflammatory diseases, although identifying these cells in humans has been challenging.
  • Recent research discovered that the GPA33 protein can help distinguish human tTreg cells from pTreg cells, as GPA33 Treg cells are stable, suppressive, and lack the ability to produce inflammatory cytokines, suggesting a potential method for isolating
View Article and Find Full Text PDF

Purpose Of Review: Tissue injury often occurs as collateral damage after chemotherapy and radiotherapy and is associated with significant comorbidity and mortality. The arsenal of options to prevent tissue injury other than dose reduction is limited, and treatment is mostly aimed at symptom relief and prevention of complications, such as bacterial translocation and malnourishment. Novel approaches directed at prevention and early repair of damaged tissues are highly anticipated.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is often associated with chemotherapy- and radiotherapy-induced host tissue damage, leading to graft-versus-host disease (GVHD). Innate lymphoid cells (ILC) have an essential role in tissue homeostasis and tissue repair via their production of interleukin (IL)-22, which acts on intestinal stem cells. The tissue healing capacities of ILC via IL-22 in the context of allo-HSCT and GVHD has previously been demonstrated in a mouse model for acute GVHD.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) have attracted considerable attention in the past years. As modulators of epithelial barrier immunology and homeostasis they play important roles in (auto)immunity and inflammation. Here we review the role of ILCs in hematologic malignancies, where ILCs act as efficient killer cells and as tissue healers, in the context of chemotherapy, radiotherapy and after allogeneic hematopoietic stem cell transplantation (HSCT).

View Article and Find Full Text PDF

Infusion of mesenchymal stromal cells (MSCs) is a promising and increasingly applied therapy for patients who suffer from a variety of inflammatory diseases, including graft-versus-host disease (GvHD), a common and life-threatening complication after allogeneic hematopoietic stem cell transplantation. The therapeutic effect of MSCs is mainly ascribed to their ability to suppress T cells and to support tissue repair. However, clinical response rates in patients with GvHD are limited to 50%, and the determinants for MSC responsiveness are unknown.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) have emerged as a key cell type involved in surveillance and maintenance of mucosal tissues. Mouse ILCs rely on the transcriptional regulator Inhibitor of DNA-binding protein 2 (Id2) for their development. Here, we show that Id2 also drives development of human ILC because forced expression of Id2 in human thymic progenitors blocked T cell commitment, upregulated CD161 and promyelocytic leukemia zinc finger (PLZF), and maintained CD127 expression, markers that are characteristic for human ILCs.

View Article and Find Full Text PDF
Article Synopsis
  • A specific group of innate lymphoid cells (ILC3s) expressing Neuropilin1 (NRP1) is found in lymphoid tissues but not in peripheral blood or skin, indicating their unique localization and function.* -
  • These NRP1 ILC3s exhibit lymphoid tissue inducer (LTi) activity and are located near high endothelial venules (HEVs), playing a role in lymphocyte migration within secondary lymphoid tissues.* -
  • In humans, NRP1 ILC3s are characterized as primed cells that produce more cytokines and are linked to conditions such as smoking and chronic obstructive pulmonary disease, suggesting their involvement in processes like angiogenesis and formation of lymphoid aggregates
View Article and Find Full Text PDF

Although CD31 expression on human thymocytes has been reported, a detailed analysis of CD31 expression at various stages of T cell development in the human thymus is missing. In this study, we provide a global picture of the evolution of CD31 expression from the CD34 hematopoietic precursor to the CD45RA mature CD4 and CD8 single-positive (SP) T cells. Using nine-color flow cytometry, we show that CD31 is highly expressed on CD34 progenitors and stays high until the early double-positive stage (CD3CD4CD8αβ).

View Article and Find Full Text PDF

Emerging evidence has demonstrated that microRNAs (miRs) play a role in the survival and amplification of viruses, bacteria and other pathogens. There are various ways in which pathogens can benefit from miR-directed alterations in protein translation and signal transduction. Members of the herpesviridae family have previously been shown to encode multiple miRs, while the production of miRs by viruses like HIV-1 remained controversial.

View Article and Find Full Text PDF

Background: The mechanisms that govern the egress of mature thymocytes from the human thymus to the periphery remain understudied yet are of utmost importance to the field of basic immunology, as well as T-cell reconstitution in various immunodeficiencies. We examined the expression and function of sphingosine-1-phosphate (S1P) receptors in human thymocyte egress.

Objectives: We aimed to determine whether S1P receptors (S1P-Rs) play a role in mature human thymocyte egress and to identify the thymocyte population or populations that express S1P-Rs and respond to S1P by migrating across a concentration gradient.

View Article and Find Full Text PDF

Human group 1 ILCs consist of at least three phenotypically distinct subsets, including NK cells, CD127(+) ILC1, and intraepithelial CD103(+) ILC1. In inflamed intestinal tissues from Crohn's disease patients, numbers of CD127(+) ILC1 increased at the cost of ILC3. Here we found that differentiation of ILC3 to CD127(+) ILC1 is reversible in vitro and in vivo.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDC) have been regarded as the "professional type I IFN-producing cells" of the immune system following viral recognition that relies on the expression of TLR7 and TLR9. Furthermore, pDC link the innate and adaptive immune systems via cytokine production and Ag presentation. More recently, their ability to induce tolerance and cytotoxicity has been added to their "immune skills.

View Article and Find Full Text PDF

In contrast to peripheral plasmacytoid DCs (pDCs), thymic pDCs constitutively express low levels of IFN-α. This leads to induction of interferon secondary genes (ISGs) in medullary thymocytes, raising the question whether IFN-α may play a role in T-cell development. When characterizing further differences between peripheral and thymic pDCs, we found that thymic pDCs have a phenotype consistent with an "activated signature" including expression of TNF-α and bone marrow stromal cell antigen 2 (BST2), but no expression of ILT7.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation (HSCT) is widely used to treat hematopoietic cell disorders but is often complicated by graft-versus-host disease (GVHD), which causes severe epithelial damage. Here we have investigated longitudinally the effects of induction chemotherapy, conditioning radiochemotherapy, and allogeneic HSCT on composition, phenotype, and recovery of circulating innate lymphoid cells (ILCs) in 51 acute leukemia patients. We found that reconstitution of ILC1, ILC2, and NCR(-)ILC3 was slow compared with that of neutrophils and monocytes.

View Article and Find Full Text PDF