Signal Transduct Target Ther
December 2024
Outer membrane (OM) lipoproteins serve vital roles in Gram-negative bacteria, contributing to their pathogenicity and drug resistance. For these lipoproteins to function, they must be transported from the inner membrane (IM), where they are assembled, to the OM by the ABC transporter LolCDE. We have previously captured structural snapshots of LolCDE in multiple states, revealing its dynamic conformational changes.
View Article and Find Full Text PDFLung regeneration after fibrosis requires formation of functional new vasculature, which is essential for gas exchange and cellular cross-talk with other lung cells. It remains unknown how the lung vasculature can be regenerated without fibrosis. Here, we tested the role of N6-methyladenosine (m6A) modification of () mRNA in lung regeneration after pneumonectomy (PNX) in mice, a model for lung regrowth after surgical resection.
View Article and Find Full Text PDFLungs can undergo facultative regeneration, but handicapped regeneration often leads to fibrosis. How microenvironmental cues coordinate lung regeneration via modulating cell death remains unknown. Here, we reveal that the neurotransmitter dopamine modifies the endothelial niche to suppress ferroptosis, promoting lung regeneration over fibrosis.
View Article and Find Full Text PDFBackground: Fibrosis results from excessive scar formation after tissue injury. Injured cells release alarmins such as interleukin 1 (IL-1) α and β as primary mediators initiating tissue repair. However, how alarmins from different cell types differentially regulate fibrosis remains to be explored.
View Article and Find Full Text PDFLung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2024
Hepatocellular carcinoma is one of the leading cancers worldwide and is a potential consequence of fibrosis. Therefore, the identification of key cellular and molecular mechanisms involved in liver fibrosis is an important goal for the development of new strategies to control liver-related diseases. Here, single-cell RNA sequencing data (GSE136103 and GES181483) of clinical liver non-parenchymal cells were analyzed to identify cellular and molecular mechanisms of liver fibrosis.
View Article and Find Full Text PDFChronic liver diseases affect over a billion people worldwide and often lead to fibrosis. Nonalcoholic steatohepatitis (NASH), a disease paralleling a worldwide surge in metabolic syndromes, is characterized by liver fibrosis, and its pathogenesis remains largely unknown, with no effective treatment available. Necroptosis has been implicated in liver fibrosis pathogenesis.
View Article and Find Full Text PDFLung metastasis of breast cancer is closely associated with patient morbidity and mortality, which correlates with myeloid cells in the lung microenvironment. However, the heterogeneity and specificity of metastasis-associated myeloid cells have not been fully established in lung metastasis. Here, by integrating and analyzing single-cell transcriptomics, we found that myeloid subpopulations ( monocytes, macrophages, neutrophils, and DCs) play critical roles in the formation and development of the metastatic niche.
View Article and Find Full Text PDFAging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need.
View Article and Find Full Text PDFVascular leakage and inflammation are pathological hallmarks of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Endothelial cells (ECs) serve as a semipermeable barrier and play a key role in disease progression. It is well known that fibroblast growth factor receptor 1 (FGFR1) is required for maintaining vascular integrity.
View Article and Find Full Text PDFDespite the robust healing capacity of the liver, regenerative failure underlies numerous hepatic diseases, including the haploinsufficient disorder, Alagille syndrome (ALGS). Cholestasis due to intrahepatic duct (IHD) paucity resolves in certain ALGS cases but fails in most with no clear mechanisms or therapeutic interventions. We find that modulating and allele dosage is sufficient to stratify these distinct outcomes, which can be either exacerbated or rescued with genetic manipulation of Notch signaling, demonstrating that perturbations of Jag/Notch signaling may be causal for the spectrum of ALGS liver severities.
View Article and Find Full Text PDFStem Cells Transl Med
November 2022
The vasculature occupies a large area of the body, and none of the physiological activities can be carried out without blood vessels. Blood vessels are not just passive conduits and barriers for delivering blood and nutrients. Meanwhile, endothelial cells covering the vascular lumen establish vascular niches by deploying some growth factors, known as angiocrine factors, and actively participate in the regulation of a variety of physiological processes, such as organ regeneration and fibrosis and the occurrence and development of cancer.
View Article and Find Full Text PDFLiver fibrosis is one main histological characteristic of nonalcoholic steatohepatitis (NASH), a disease paralleling a worldwide surge in metabolic syndromes with no approved therapies. The role of the gut microbiota in NASH pathogenesis has not been thoroughly illustrated, especially how the gut microbiota derives metabolites to influence the distal liver in NASH. Here, we performed 16S rDNA amplicon sequencing analysis of feces from a mouse NASH model induced by a Western diet and CCl injury and found genera under , , , and , which are related metabolites of TMAO.
View Article and Find Full Text PDFHistone variants and the associated post-translational modifications that govern the stemness of haematopoietic stem cells (HSCs) and differentiation thereof into progenitors (HSPCs) have not been well defined. H3.3 is a replication-independent H3 histone variant in mammalian systems that is enriched at both H3K4me3- and H3K27me3-marked bivalent genes as well as H3K9me3-marked endogenous retroviral repeats.
View Article and Find Full Text PDFBackground & Aims: Currently there is no effective treatment for liver fibrosis, which is one of the main histological determinants of non-alcoholic steatohepatitis (NASH). While Hippo/YAP (Yes-associated protein) signaling is essential for liver regeneration, its aberrant activation frequently leads to fibrosis and tumorigenesis. Unravelling "context-specific" contributions of YAP in liver repair might help selectively bypass fibrosis and preserve the pro-regenerative YAP function in hepatic diseases.
View Article and Find Full Text PDFChronic hepatic diseases such as nonalcoholic steatohepatitis (NASH) suppress liver regeneration and lead to fibrosis and cirrhosis. Decoding the cellular and molecular network underlying this fibrotic maladaptation might aid in combatting NASH, a growing health challenge with no approved therapies. Here, we used multiomics analysis of human cirrhotic liver, a Western diet– and carbon tetrachloride (CCl)–induced minipig NASH model, and genetically modified mice to unravel the landscape of the vascular adaptome at the single-cell level, in which endothelial cells (ECs) and T17 cells jointly contribute to liver cirrhosis.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is marked by airway inflammation and airspace enlargement (emphysema) leading to airflow obstruction and eventual respiratory failure. Microvasculature dysfunction is associated with COPD/emphysema. However, it is not known if abnormal endothelium drives COPD/emphysema pathology and/or if correcting endothelial dysfunction has therapeutic potential.
View Article and Find Full Text PDFKidney fibrosis is accompanied by vascular dysfunction. Discovering new ways to ameliorate dysfunctional angiogenesis may bypass kidney fibrosis. YAP (Yes-associated protein) plays a multifaceted role during angiogenesis.
View Article and Find Full Text PDFRegenerative capacity is frequently impaired in aged organs. Stress to aged organs often causes scar formation (fibrosis) at the expense of regeneration. It remains to be defined how hematopoietic and vascular cells contribute to aging-induced regeneration to fibrotic transition.
View Article and Find Full Text PDFChromosome copy-number variations are a hallmark of cancer. Among them, the prevalent chromosome 17p deletions are associated with poor prognosis and can promote tumorigenesis more than loss. Here, we use multiple functional genetic strategies and identify a new 17p tumor suppressor gene (TSG), plant homeodomain finger protein 23 ().
View Article and Find Full Text PDF