Waveguides and resonators are core components in the large-scale integration of electronics, photonics and phononics, both in existing and future scenarios. In certain situations, there is critical coupling of the two components; i.e.
View Article and Find Full Text PDFHigher-order topological insulators, as newly found non-trivial materials and structures, possess topological phases beyond the conventional bulk-boundary correspondence. In previous studies, in-gap boundary states such as the corner states were regarded as conclusive evidence for the emergence of higher-order topological insulators. Here, we present an experimental observation of a photonic higher-order topological insulator with corner states embedded into the bulk spectrum, denoted as the higher-order topological bound states in the continuum.
View Article and Find Full Text PDFWave trapping and manipulation are at the heart of modern integrated photonics and acoustics. Grand challenges emerge on increasing the integration density and reducing the wave leakage/noises due to fabrication imperfections, especially for waveguides and cavities at subwavelength scales. The rising of robust wave dynamics based on topological mechanisms offers possible solutions.
View Article and Find Full Text PDFThe studies of topological phases of matter have been developed from condensed matter physics to photonic systems, resulting in fascinating designs of robust photonic devices. Recently, higher-order topological insulators have been investigated as a novel topological phase of matter beyond the conventional bulk-boundary correspondence. Previous studies of higher-order topological insulators have been mainly focused on the topological multipole systems with negative coupling between lattice sites.
View Article and Find Full Text PDFThe topological phases in materials have been studied in recent decades for their unique boundary states and transport properties. Photonic systems with band structures embrace the topological phases closely, where they not only provide platforms to testify the topological band theory, but also shed light on designing novel optical devices. In this review, we present exciting developments, supported by brief descriptions of prominent milestones of topological phases in photonic systems in recent years.
View Article and Find Full Text PDF