Publications by authors named "Bi-Cheng Hu"

Aqueous rechargeable lithium-ion batteries (ARLIBs) are extensively researched due to their inherent safety, typical affordability, and potential high energy density. However, fabricating ARLIBs with both high energy density and power performance remains challenging. Herein, based on cyanoethyl-modified bacterial cellulose nanofibers (CBCNs), a multifunctional fast ion transport framework is developed to construct the flexible free-standing ARLIBs with high areal loading and excellent rate performance.

View Article and Find Full Text PDF

Uncontrolled lithium dendrites seriously hinder the commercialization of lithium metal batteries in comparison to the durable lithium-ion batteries. Herein, inspired by squashy pomegranate structure, a novel loading strategy of metallic lithium (Li) is introduced to construct dendrite-free Li metal anodes through porous reduced graphene oxide/Au (PRGO/Au) composite microrods (MRs) as unique storage parcels. The abundant internal voids and robust host structure are capable of achieving high mass loading of Li metal and effectively alleviating the conceivable volume change during cycling, accompanied by the preferential selective plating/stripping of Li inside the graphene-based MRs with the embedded Au nanonuclei.

View Article and Find Full Text PDF

By virtue of their extraordinarily high surface areas, ordered pore structures, various compositions, and rich functionality, metal-organic frameworks (MOFs) are of great interest in diverse fields such as gas separation, sensing, catalysis, energy, environment science, and biomedicine. However, the difficulty in processing MOF crystals and controlling the MOF superstructure is emerging as a critical issue in their application. Herein, it is reported that a robust template, i.

View Article and Find Full Text PDF

Superelastic and fatigue-resistant materials that can work over a wide temperature range are highly desired for diverse applications. A morphology-retained and scalable carbonization method is reported to thermally convert a structural biological material (i.e.

View Article and Find Full Text PDF

The anode oxygen evolution reaction (OER) is known to largely limit the efficiency of electrolyzers owing to its sluggish kinetics. While crystalline metal oxides are promising as OER catalysts, their amorphous phases also show high activities. Efforts to produce amorphous metal oxides have progressed slowly, and how an amorphous structure benefits the catalytic performances remains elusive.

View Article and Find Full Text PDF

Carbon aerogels that are typically prepared using sol-gel chemistry have unique three dimensional networks of interconnected nanometer-sized particles and thus exhibit many fascinating physical properties and great application potentials in widespread fields. To boost the practical applications, it is necessary to develop efficient and low-cost methods to produce high-performance carbon aerogels on a large-scale, preferably in a sustainable way. In 2012, two new classes of aerogels consisting of carbon-nanofiber (CNF) networks were prepared from biomass-derived precursors by chemosynthesis (i.

View Article and Find Full Text PDF

Carbon aerogels with 3D networks of interconnected nanometer-sized particles exhibit fascinating physical properties and show great application potential. Efficient and sustainable methods are required to produce high-performance carbon aerogels on a large scale to boost their practical applications. An economical and sustainable method is now developed for the synthesis of ultrathin carbon nanofiber (CNF) aerogels from the wood-based nanofibrillated cellulose (NFC) aerogels via a catalytic pyrolysis process, which guarantees high carbon residual and well maintenance of the nanofibrous morphology during thermal decomposition of the NFC aerogels.

View Article and Find Full Text PDF

Improving heteroatomic interactions via alloying or forming heterogeneous catalysts is of importance to the enhancement in terms of electrocatalytic activity and stability. In this work, a simple galvanic replacement reaction was utilized to synthesize low Pt-based quaternary nanotubes (NTs). It is easy to obtain PtPdRuTe NTs with different composition and controlled shape using ultrathin Te nanowires (NWs) as sacrificial templates for its high activity.

View Article and Find Full Text PDF

Two-dimensional inorganic nanomaterials have drawn much attention due to their excellent properties and wide applications associated with unique 2D structures. However, an efficient and versatile chemical synthesis method using ambient conditions for 2D nanomaterials, especially with secondary structures ( mesopores), has still not been reported. Herein, we report a versatile method to synthesize a family of ultrathin and mesoporous nanosheets of metal selenides based on a precursor so-called "red Se remaining Zn" (RSRZ).

View Article and Find Full Text PDF

Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale.

View Article and Find Full Text PDF

Exploring low-cost and high-performance nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in fuel cells and metal-air batteries is crucial for the commercialization of these energy conversion and storage devices. Here we report a novel NPMC consisting of Fe3 C nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers, which is synthesized by a cost-effective method using carbonaceous nanofibers, pyrrole, and FeCl3 as precursors. The electrocatalyst exhibits outstanding ORR activity (onset potential of -0.

View Article and Find Full Text PDF