Publications by authors named "Bi Zhenggang"

Background And Aims: It is important to distinguish between motor and sensory fascicles of the peripheral nerves for nerve alignment in surgery. However, there are no biomarkers currently available for effective identification of motor or sensory fascicles. The objective of this study was to identify differentially expressed proteins between motor and sensory fascicles of rats in response to injury.

View Article and Find Full Text PDF

Introduction: Fire and nitrogen (N) deposition each impact biodiversity and ecosystem productivity. However, the effect of N deposition on ecosystem recovery after fire is still far from understood, especially in coastal wetlands.

Methods: We selected a typical coastal shrubland to simulate three N deposition levels (0, 10, and 20 g N m year) under two different burned conditions (unburned and burned) in the Yellow River Delta of North China.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a severe neurological disorder and the molecular mechanisms leading to its poor prognosis remain to be elucidated. S100A1, a mediator of Ca2+ handling of sarcoplasmic reticulum and mitochondrial function, operates as an endogenous danger signal (alarmin) associated with inflammatory response and tissue injury. The aim of the present study was to investigate the expression and biological effects of S100A1 in SCI.

View Article and Find Full Text PDF

Nowadays, there is a serious lack of information about the value-added apoptosis of sarcoma cells in China. Especially in clinical medicine, exploring the effect of ibuprofen on the growth and apoptosis of fibrosarcoma cells under the PI3K/Akt/mTOR signaling pathway can not only effectively prevent us in advance, but also be a great way to break through this field. The main purpose of this study was to investigate the effects of ibuprofen on the proliferation, cell cycle and apoptosis of fibrosarcoma cells through the PI3K/Akt/mTOR signaling pathway.

View Article and Find Full Text PDF

Targeting angiogenesis has been considered a promising treatment for a large number of malignancies, including osteosarcoma. Bevacizumab (Bev) is an anti-vascular endothelial growth factor being used for this purpose. We herein investigate the therapeutic potential of Bev in angiogenesis during osteosarcoma and the related mechanisms.

View Article and Find Full Text PDF

Peiminine has been reported to have various pharmacological properties, including anticancer activity. In this study, we investigated the effect of this alkaloid on osteosarcoma and explored the underlying mechanisms. To evaluate the antiosteosarcoma effects of peiminine , cell viability was assessed by CCK-8 and live/dead assays; the effects of the drug on apoptosis and the cell cycle were examined by flow cytometry; the effects on cell migration and invasion were detected by wound healing and Transwell assays, respectively, while its effects on autophagy were observed by transmission electron microscopy and an LC3 fluorescent puncta formation assay.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (BMSCs) are a potential source of osteoblasts and have been widely used in clinical therapies due to their pluripotency. Recent publications have found that resveratrol (RSVL) played a crucial role in the proliferation and differentiation of BMSCs; however, the underlying molecular mechanism of RSVL-induced BMSCs osteogenic differentiation needs to be fully elucidated. The objective of this study was to explore functions of miRNAs in the RSVL-treated BMSCs and its effects on the differentiation potentials of BMSCs.

View Article and Find Full Text PDF

Background: More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis.

Methods: 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP.

View Article and Find Full Text PDF

Background: Long noncoding RNAs (lncRNAs) serve as crucial regulators in the pathogenesis of spinal cord injury (SCI). However, the role of lncRNA SOX2 overlapping transcript (SOX2OT) in SCI remains to be well revealed.

Methods: An SCI rat model was established and assessed by the Basso-Beattie-Bresnahan (BBB) method.

View Article and Find Full Text PDF

Osteosarcoma (OS) is a malignant bone tumor with a poor prognosis. Accumulated evidence has suggested that microRNAs (miRNAs/miRs) may function as either oncogenes or tumor suppressors, which are associated with tumorigenesis and the progression of different types of cancer. In the present study, the role of miR-208a-3p in OS was investigated.

View Article and Find Full Text PDF

It is well known that copper is an excellent option for a Ti-based alloy component as a β-stabilizer that provides improved biocompatibility and antibacterial ability. The development of a Ti-based nanomaterial containing Cu is a promising strategy for addressing implant-associated infections (OII). However, the antibacterial mechanism of copper-related alloys is still unknown.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BMSCs) have been suggested to possess the capacity to differentiate into different cell lineages. Maintaining a balanced stem cell differentiation program is crucial to the bone microenvironment and bone development. MicroRNAs (miRNAs) have played a critical role in regulating the differentiation of BMSCs into particular lineage.

View Article and Find Full Text PDF

Osteoporosis is closely associated with the dysfunction of bone metabolism, which is caused by the imbalance between new bone formation and bone resorption. Osteogenic differentiation plays a vital role in maintaining the balance of bone microenvironment. The present study investigated whether melatonin participated in the osteogenic commitment of bone marrow mesenchymal stem cells (BMSCs) and further explored its underlying mechanisms.

View Article and Find Full Text PDF

BACKGROUND Osteoarthritis (OA) of the knee is a common disease that is associated with chronic pain. This study aimed to identify and investigate the functional role of biomarkers associated with long noncoding RNA (lncRNA) in the progression of OA of the knee by lncRNA-associated competing endogenous RNA (ceRNA) integrated network analysis. MATERIAL AND METHODS High-quality microRNA (miRNA)-lncRNA and miRNA-mRNA interactions and lncRNA and mRNA expression profiles for patients with OA of the knee with mild and severe pain were obtained from the Gene Expression Omnibus (GEO) database (GSE99662).

View Article and Find Full Text PDF

Osteosarcoma (OS) is the predominant form of primary bone malignancy in children and adolescents. Although the combination of chemotherapy and modified surgical therapy leads to marked improvements in the survival rate, the therapeutic outcomes remain unsatisfactory. Therefore, the identification of novel drugs with higher efficacy and fewer side‑effects is urgently required.

View Article and Find Full Text PDF

Abnormal expression of microRNAs (miRNAs) has been found in most cancer types. Therefore, the discovery of miRNAs could help us to understand the mechanism of tumor initiation and development. The purpose of this study was to investigate the significance of miR-196 in osteosarcoma (OS) and to identify its target genes.

View Article and Find Full Text PDF

Osteosarcoma is an aggressive cancer of the skeletal system, which is associated with a poor prognosis due to the high recurrence rate. Although previous studies have revealed that competitive endogenous RNAs (ceRNAs) are involved in various biological processes in the physiology and development of osteosarcoma, the roles of ceRNAs in osteosarcoma recurrence remain largely unexplored. The present study constructed a ceRNA‑ceRNA network for osteosarcoma by systematically integrating matched expression profiles for microRNAs (miRNAs/miRs) and mRNAs, and identified two ceRNA‑mediated modules that were associated with recurrence in patients with osteosarcoma.

View Article and Find Full Text PDF

Human osteosarcoma is considered a malignant tumor with poor prognosis that readily metastasizes. Tetrahydrocurcumin (THC) has been reported to have anti-tumor activity in numerous tumors. In addition, hypoxia-inducible factor-1α (HIF-1α) has been demonstrated to be associated with tumor metastasis by regulating epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Background/aims: Osteosarcoma is the predominant form of primary bone malignancy. Although the combinational application of neoadjuvant chemotherapy and surgical resection significantly increases the survival rate, the therapeutic outcome remains unsatisfactory. Deoxyelephantopin (DET), an active ingredient of Elephantopus scaber, has been reported to have an anti-tumor effect in recent publications.

View Article and Find Full Text PDF

The treatment of osteoporosis typically inhibits the activity of osteoclasts, which subsequently results in the suppression of bone formation and maintenance, however the underlying mechanism remains to be elucidated. The receptor activator of nuclear factor κ‑B ligand (RANKL)‑receptor activator of nuclear factor κ‑B (RANK) signaling axis is important in the osteoblast regulation of osteoclasts. RANKL surface‑bound molecules expressed on T cells stimulate a reverse signaling transduction in order to regulate the T cells, therefore the present study hypothesized that RANKL expressed on osteoblasts may transfer reverse signals to regulate osteoblasts.

View Article and Find Full Text PDF

Background: The proteasome exists in all eukaryotic cells and provides the main route of intracellular proteins degradation involved in cell growth and apoptosis. Proteasome inhibition could block protein degradation pathways and disturb regulatory networks, possibly leading to profound effects on cell growth, particularly in cancer cells. A proteasome inhibitor with an appropriate toxicity index for malignant cells rather than normal cells would be an attractive anticancer therapy.

View Article and Find Full Text PDF

Osteosarcoma is the major malignant primary bone cancer in children and adolescents, which is highly aggressive with frequent acquisition of chemoresistance phenotypes. Although much progress has been made, mechanisms of osteosarcoma rapid growth and chemoresistance are still not well elucidated. Generally, alternated metabolic characterization has been proposed to be a hallmark of cancer, yet it is lack of a systematic characterization of cancer metabolic networks.

View Article and Find Full Text PDF

The aim of the study was to critically review the clinical approach to distinguish the sensory and motor nerve fascicles of the peripheral nerve system and to explore potential novel techniques to meet the clinical needs. The principles and shortcomings of the currently used methods for identification of sensory and motor nerve fascicles, including nerve morphology, electrical stimulation, spectroscopy, enzymohistochemistry staining (acetylcholinesterase [AchE], carbonic anhydrase [CA] and choline acetyltransferase [ChAC] histochemistry staining methods), and immunochemical staining were systematically reviewed. The progress in diffusion tensor imaging, proteomic approaches, and quantum dots (QDs) assessment in clinical applications to identify sensory or motor fascicles has been discussed.

View Article and Find Full Text PDF