The divergence of natural stress tolerance mechanisms between species is an intriguing phenomenon. To study it in rice, a comparative transcriptome analysis was carried out in 'heading' stage tissue (flag leaf, panicles and roots) of Nagina 22 (N22; drought-tolerant) and IR64 (drought-sensitive) plants subjected to field drought. Interestingly, N22 showed almost double the number of differentially expressed genes (DEGs) than IR64.
View Article and Find Full Text PDFUnder the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions.
View Article and Find Full Text PDF() is an auxin-regulated gene which functions in auxin pathway and positively regulates biomass, grain size and yield in rice. However, the evolutionary origin and divergence of these genes are still unknown. In this study, we found that genes are probably originated in seed plants.
View Article and Find Full Text PDFPlants have the ability to adjust its physiology and metabolism to the changes of nutrient availability in the environment. Since a number of common responses are regulated by sugar and auxin, the obvious question arises is whether sugar and auxin act interdependently to bring about changes in plant morphology. In the February issue of the PLoS ONE, we presented detailed investigation of glucose and auxin signaling interaction in controlling root growth and development in Arabidopsis thaliana seedlings.
View Article and Find Full Text PDFBackground: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction.
View Article and Find Full Text PDF