Direct reprogramming of non-neuronal cells to generate new neurons is a promising approach to repair damaged brains. Impact of the in vivo environment on neuronal reprogramming, however, is poorly understood. Here we show that regional differences and injury conditions have significant influence on the efficacy of reprogramming and subsequent survival of the newly generated neurons in the adult rodent brain.
View Article and Find Full Text PDFRationale: Elastin is a ubiquitous extracellular matrix protein that is highly organized in heart valves and arteries. Because elastic fiber abnormalities are a central feature of degenerative valve disease, we hypothesized that elastin-insufficient mice would manifest viable heart valve disease.
Objective: To analyze valve structure and function in elastin-insufficient mice (Eln(+/-)) at neonatal, juvenile, adult, and aged adult stages.
Objectives: To advance our biological understanding of pediatric septic shock, we measured the genome-level expression profiles of critically ill children representing the systemic inflammatory response syndrome (SIRS), sepsis, and septic shock spectrum.
Design: Prospective observational study involving microarray-based bioinformatics.
Setting: Multiple pediatric intensive care units in the United States.
The atrioventricular (AV) valves of the heart develop from undifferentiated mesenchymal endocardial cushions, which later mature into stratified valves with diversified extracellular matrix (ECM). Because the mature valves express genes associated with osteogenesis and exhibit disease-associated calcification, we hypothesized the existence of shared regulatory pathways active in developing AV valves and in bone progenitor cells. To define gene regulatory programs of valvulogenesis relative to osteoblast progenitors, we undertook Affymetrix gene expression profiling analysis of murine embryonic day (E)12.
View Article and Find Full Text PDFBackground: Peripheral blood mononuclear cells (PBMC) serve a sentinel role allowing the host to efficiently sense and adapt to the presence of danger signals. Herein we have directly compared the genome-level expression patterns (microarray) of a human PBMC model (THP-1 cells) subjected to one of two canonical danger signals, heat shock or lipopolysaccharide (LPS).
Results And Discussion: Based on sequential expression and statistical filters, and in comparison to control cells, we found that 3,988 genes were differentially regulated in THP-1 cells subjected to LPS stress, and 2,921 genes were differentially regulated in THP-1 cells subjected to heat shock stress.
We previously generated genome-wide expression data (microarray) from children with septic shock having the potential to lead the field into novel areas of investigation. Herein we seek to validate our data through a bioinformatic approach centered on a validation patient cohort. Forty-two children with a clinical diagnosis of septic shock and 15 normal controls served as the training data set, while 30 separate children with septic shock and 14 separate normal controls served as the test data set.
View Article and Find Full Text PDFWe have conducted longitudinal studies focused on the expression profiles of signaling pathways and gene networks in children with septic shock. Genome-level expression profiles were generated from whole blood-derived RNA of children with septic shock (n=30) corresponding to day one and day three of septic shock, respectively. Based on sequential statistical and expression filters, day one and day three of septic shock were characterized by differential regulation of 2,142 and 2,504 gene probes, respectively, relative to controls (n=15).
View Article and Find Full Text PDFBackground: The expression of carcino-embryonic antigen by colorectal cancer is an example of oncogenic activation of embryonic gene expression. Hypothesizing that oncogenesis-recapitulating-ontogenesis may represent a broad programmatic commitment, we compared gene expression patterns of human colorectal cancers (CRCs) and mouse colon tumor models to those of mouse colon development embryonic days 13.5-18.
View Article and Find Full Text PDFHuman septic shock involves multiple genome-level perturbations. We have conducted microarray analyses in children with septic shock within 24 h of intensive care unit admission, using whole blood-derived RNA. Based on sequential statistical and expression filters, there were 2,482 differentially regulated gene probes (1,081 upregulated and 1,401 downregulated) between patients with septic shock (n = 42) and controls (n = 15).
View Article and Find Full Text PDF