This study aimed to probe the effect of formulation of scaffolds prepared using collagen and elastin-like polypeptide (ELP) and their resulting physico-chemical and mechanical properties on the adipogenic differentiation of human adipose derived stem cells (hASCs). Six different ELP-collagen scaffolds were prepared by varying the collagen concentration (2 and 6 mg/mL), ELP addition (6 mg/mL), or crosslinking of the scaffolds. FTIR spectroscopy indicated secondary bonding interactions between collagen and ELP, while scanning electron microscopy revealed a porous structure for all scaffolds.
View Article and Find Full Text PDFWe have developed a multicomponent hydrogel scaffold that can mimic the bone extracellular matrix by incorporating collagen, elastin-like polypeptide (ELP), and Bioglass. We examined the effects of Bioglass addition to collagen-ELP scaffolds on mechanical properties, physical characteristics, and osteogenic differentiation, by varying the Bioglass amount and particle size. Response surface methodology with a central composite design predicted 5 mg (6.
View Article and Find Full Text PDFThe goals of this study are to evaluate the ability of the multicomponent collagen-elastin-like polypeptide (ELP)-Bioglass scaffolds to support osteogenesis of rat mesenchymal stem cells (rMSCs), demonstrate in vivo biocompatibility by subcutaneous implantation in Sprague-Dawley rats, monitor degradation noninvasively, and finally assess the scaffold's ability in healing critical-sized cranial bone defects. The collagen-ELP-Bioglass scaffold supports the in vitro osteogenic differentiation of rMSCs over a 3 week culture period. The cellular (rMSC-containing) or acellular scaffolds implanted in the subcutaneous pockets of rats do not cause any local or systemic toxic effects or tumors.
View Article and Find Full Text PDFThe ability of a tissue-engineered scaffold to regenerate functional tissues depends on its mechanical and biochemical properties. Though the commonly used collagen scaffolds have good biochemical properties, they fail due to their poor mechanical and physical properties. We have reinforced the collagen matrix with elastin-like polypeptide (ELP) to improve the mechanical and physical properties and optimized the composite composition using a novel statistical method of response surface methodology (RSM).
View Article and Find Full Text PDFUnderstanding the process of adipogenesis is critical if suitable therapeutics for obesity and related metabolic diseases are to be found. The current study presents proof of feasibility of creating a 3-D spheroid model using human adipose-derived stem cells (hASCs) and their subsequent adipogenic differentiation. hASC spheroids were formed atop an elastin-like polypeptide-polyethyleneimine (ELP-PEI) surface and differentiated using an adipogenic cocktail.
View Article and Find Full Text PDF3D culture systems have the ability to mimic the natural microenvironment by allowing better cell-cell interactions. We have prepared an in vitro 3D osteogenic cell culture model using human adipose derived stem cells (hASCs) cultured atop recombinant elastin-like polypeptide (ELP) conjugated to a charged polyelectrolyte, polyethyleneimine (PEI). We demonstrate that hASCs cultured atop the ELP-PEI coated tissue culture polystyrene (TCPS) formed 3D spheroids and exhibited superior differentiation toward osteogenic lineage compared to the traditional two dimensional (2D) monolayer formed atop uncoated TCPS.
View Article and Find Full Text PDFObjective: Collagen-based scaffolds for guided bone regeneration (GBR) are continuously improved to overcome the mechanical weaknesses of collagen. We have previously demonstrated superior mechanical characteristics of the elastin-like polypeptide (ELP) reinforced collagen composites. The objectives of this research were to evaluate the efficacy of ELP-collagen composites to culture human adipose-derived stem cells (hASCs) and allow them to undergo osteogenic differentiation.
View Article and Find Full Text PDFJ Contemp Dent Pract
July 2013