Computational biologists use network analysis to uncover relationships between various data types of interest for drug discovery. For example, signalling and metabolic pathways are commonly used to understand disease states and drug mechanisms. However, several other flavours of network analysis techniques are also applicable in a drug discovery context.
View Article and Find Full Text PDFA general paucity of knowledge about the metabolic state of Mycobacterium tuberculosis within the host environment is a major factor impeding development of novel drugs against tuberculosis. Current experimental methods do not allow direct determination of the global metabolic state of a bacterial pathogen in vivo, but the transcriptional activity of all encoded genes has been investigated in numerous microarray studies. We describe a novel algorithm, Differential Producibility Analysis (DPA) that uses a metabolic network to extract metabolic signals from transcriptome data.
View Article and Find Full Text PDFNext-generation sequencing (NGS) technologies represent a paradigm shift in sequencing capability. The technology has already been extensively applied to biological research, resulting in significant and remarkable insights into the molecular biology of cells. In this review, we focus on current and potential applications of the technology as applied to the drug discovery and development process.
View Article and Find Full Text PDFUsing flux variability analysis of a genome scale metabolic network of Streptomyces coelicolor, a series of reactions were identified, from disparate pathways that could be combined into an actinorhodin-generating mini-network. Candidate process feed nutrients that might be expected to influence this network were used in process simulations and in silico predictions compared to experimental findings. Ranking potential process feeds by flux balance analysis optimisation, using either growth or antibiotic production as objective function, did not correlate with experimental actinorhodin yields in fed processes.
View Article and Find Full Text PDF