Publications by authors named "Bhupendra S Panwar"

Thaumatin-like protein (TLP) is the well-known sweetest protein which plays a crucial role in diverse developmental processes and different stress conditions in plants, fungi and animals. The TLP gene family is extensively studied in different plant species including crop plants. Watermelon (Citrullus lanatus) is an important cucurbit crop cultivated worldwide; however, the comprehensive information about the TLP gene family is not available in watermelon.

View Article and Find Full Text PDF

Bacillus thuringiensis (Bt) strains produce Cry (crystal) and Cyt (cytolytic) proteins belonging to the group of bacterial toxins known as pore-forming toxins (PFTs), which interact with midgut cells of target insects to create pores, disruption of ion homeostasis and eventual death. PFTs have synergistic insecticidal activities and have been used as biopesticides against agriculturally important insects. Identification of new Cyt proteins is important because of their specific toxicity towards hemipteran pests, against which the Cry proteins are not effective.

View Article and Find Full Text PDF

The novel cry52Ca1 gene from an Indian Bacillus thuringiensis (Bt) isolate was cloned in an expression vector (pET301/CT-DEST, 6xHis). The gene expressed as a ∼77.2 kDa protein in E.

View Article and Find Full Text PDF

Novel genes from Bacillus thuringiensis (Bt) are required for effective deployment in agriculture, human health, and forestry. In an improvement over conventional PCR-based screening, next generation sequencing (NGS) has been used for identification of new genes of potential interest from Bt strains, but cost becomes a constraint when several isolates are to be sequenced. We demonstrate the potential of a DNA pooling strategy known as pool deconvolution to identify commercially important toxin genes from 36 native Bt isolates.

View Article and Find Full Text PDF

Transgenic hairy roots of Solanum lycopersicum were engineered to express a recombinant protein containing a fusion of rabies glycoprotein and ricin toxin B chain (rgp-rtxB) antigen under the control of constitutive CaMV35S promoter. Asialofetuin-mediated direct ELISA of transgenic hairy root extracts was performed using polyclonal anti-rabies antibodies (Ab1) and epitope-specific peptidal anti-RGP (Ab2) antibodies which confirmed the expression of functionally viable RGP-RTB fusion protein. Direct ELISA based on asialofetuin-binding activity was used to screen crude protein extracts from five transgenic hairy root lines.

View Article and Find Full Text PDF