At organic donor-acceptor (D-A) interfaces, electron and hole are bound together to form charge transfer (CT) excitons. The electron and hole wave functions in these CT excitons can spatially delocalize. The electron delocalization opens up possibilities of extracting free charges from bound excitons by manipulating the potential energy landscape on the nanoscale.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
Organic-inorganic hybrid halide perovskites have emerged recently as highly promising materials for optoelectronics such as photovoltaics and photodetectors. A unique feature of these materials is ion diffusion that directly impacts the optoelectronic process by affecting the charge transport and trapping. In order to shed light on the ionic diffusion behavior, the hybrid perovskites MAPbI and MAPbI with minor doping of phenyl-C61-butyric acid methyl-ester (MAPbI-PCBM) thin-film capacitors were investigated in the presence of steady and dynamic visible illumination of different intensities.
View Article and Find Full Text PDFPlasmonic metal nanostructures provide a promising strategy for light trapping and therefore can dramatically enhance photocurrent in optoelectronics only if the trapped light can be coupled effectively from plasmons to excitons, whereas the reverse transfer of energy, charge, and heat from excitons to plasmons can be suppressed. Motivated by this, this work develops a scheme to implement a metafilm with Ag nanoparticles (NPs) embedded in 10 nm thick silica (Ag NPs-silica metafilm) to the active device channel of a hybrid perovskite film/graphene photodetector. Remarkably, an enhancement factor of 7.
View Article and Find Full Text PDFMonolayer transition-metal dichalcogenide crystals (TMDC) can be combined with other functional materials, such as organic molecules, to form a wide range of heterostructures with tailorable properties. Although a number of works have shown that ultrafast charge transfer (CT) can occur at organic/TMDC interfaces, conditions that would facilitate the separation of interfacial CT excitons into free carriers remain unclear. Here, time-resolved and steady-state photoemission spectroscopy are used to study the potential energy landscape, charge transfer, and exciton dynamics at the zinc phthalocyanine (ZnPc)/monolayer (ML) MoS and ZnPc/bulk MoS interfaces.
View Article and Find Full Text PDFAt organic semiconductor interfaces, an electron and a hole can be bound Coulombically to form an interfacial charge transfer (CT) exciton. It is still under debate how a CT exciton can overcome its strong binding and dissociate into free carriers. Experimentally, capturing the evolution of the CT exciton on time (fs-ps) and length scales (nm) in which the dissociation process occurs is challenging.
View Article and Find Full Text PDFIn organic and low-dimensional materials, electrons and holes are bound together to form excitons. Effective exciton dissociation at interfaces is essential for applications such as photovoltaics and photosensing. Here, we present an interface-sensitive, time-resolved method that utilizes graphene field effect transistor as an electric-field sensor to measure the charge separation dynamics and yield at donor-acceptor interfaces.
View Article and Find Full Text PDFTwo-dimensional transition-metal dichalcogenides (TMD) can be combined with other materials such as organic small molecules to form hybrid van der Waals heterostructures. Because of different properties possessed by these two materials, the hybrid interface can exhibit properties that cannot be found in either of the materials. In this work, the zinc phthalocyanine (ZnPc)-molybdenum disulfide (MoS) interface is used as a model system to study the charge transfer at these interfaces.
View Article and Find Full Text PDFIn ZnO quantum dot/graphene heterojunction photodetectors, fabricated by printing quantum dots (QDs) directly on the graphene field-effect transistor (GFET) channel, the combination of the strong quantum confinement in ZnO QDs and the high charge mobility in graphene allows extraordinary quantum efficiency (or photoconductive gain) in visible-blind ultraviolet (UV) detection. Key to the high performance is a clean van der Waals interface to facilitate an efficient charge transfer from ZnO QDs to graphene upon UV illumination. Here, we report a robust ZnO QD surface activation process and demonstrate that a transition from zero to extraordinarily high photoresponsivity of 9.
View Article and Find Full Text PDFHow tightly bound charge transfer (CT) excitons dissociate at organic donor-acceptor interfaces has been a long-standing question in the organic photovoltaics community. Recently, it has been proposed that exciton delocalization reduces the exciton binding energy and promotes exciton dissociation. In order to understand this mechanism, it is critical to resolve the evolution of the exciton's binding energy and coherent size with femtosecond time resolution.
View Article and Find Full Text PDFThe electronic properties of small molecule organic crystals depend heavily on the molecular orientation. For multi-layer organic photovoltaics, it is desirable for the molecules to have a face-on orientation in order to enhance the out-of-plane transport properties. However, it is challenging to grow well-ordered and smooth films with a face-on stacking on conventional substrates such as metals and oxides.
View Article and Find Full Text PDF