The predominant assay detection methodologies used for enzyme inhibitor identification during early-stage drug discovery are fluorescence-based. Each fluorophore has a characteristic fluorescence decay, known as the fluorescence lifetime, that occurs throughout a nanosecond-to-millisecond timescale. The measurement of fluorescence lifetime as a reporter for biological activity is less common than fluorescence intensity, even though the latter has numerous issues that can lead to false-positive readouts.
View Article and Find Full Text PDFJ Med Chem
September 2020
The bromodomain and extraterminal domain (BET) family of epigenetic regulators comprises four proteins (BRD2, BRD3, BRD4, BRDT), each containing tandem bromodomains. To date, small molecule inhibitors of these proteins typically bind all eight bromodomains of the family with similar affinity, resulting in a diverse range of biological effects. To enable further understanding of the broad phenotype characteristic of pan-BET inhibition, the development of inhibitors selective for individual, or sets of, bromodomains within the family is required.
View Article and Find Full Text PDFThe bromodomain of ATAD2 has proved to be one of the least-tractable proteins within this target class. Here, we describe the discovery of a new class of inhibitors by high-throughput screening and show how the difficulties encountered in establishing a screening triage capable of finding progressible hits were overcome by data-driven optimization. Despite the prevalence of nonspecific hits and an exceptionally low progressible hit rate (0.
View Article and Find Full Text PDFATAD2 is a bromodomain-containing protein whose overexpression is linked to poor outcomes in a number of different cancer types. To date, no potent and selective inhibitors of the bromodomain have been reported. This article describes the structure-based optimization of a series of naphthyridones from micromolar leads with no selectivity over the BET bromodomains to inhibitors with sub-100 nM ATAD2 potency and 100-fold BET selectivity.
View Article and Find Full Text PDFOverexpression of ATAD2 (ATPase family, AAA domain containing 2) has been linked to disease severity and progression in a wide range of cancers, and is implicated in the regulation of several drivers of cancer growth. Little is known of the dependence of these effects upon the ATAD2 bromodomain, which has been categorized as among the least tractable of its class. The absence of any potent, selective inhibitors limits clear understanding of the therapeutic potential of the bromodomain.
View Article and Find Full Text PDFThe biological complexity associated with the regulation of histone demethylases makes it desirable to configure a cellular mechanistic assay format that simultaneously encompasses as many of the relevant cellular processes as possible. In this report, the authors describe the configuration of a JMJD3 high-content cellular mechanistic imaging assay that uses single-cell multiparameter measurements to accurately assess cellular viability and the enzyme-dependent demethylation of the H3K27(Me)3 mark by exogenously expressed JMJD3. This approach couples robust statistical analyses with the spatial resolving power of cellular imaging.
View Article and Find Full Text PDFHigh-throughput screening and subsequent optimization led to the discovery of novel 3-oxazolidinedione-6-aryl-pyridinones exemplified by compound 2 as potent and selective EP3 antagonists with excellent pharmacokinetic properties. Compound 2 was orally active and showed robust in vivo activities in overactive bladder models. To address potential bioactivation liabilities of compound 2, further optimization resulted in compounds 9 and 10, which maintained excellent potency, selectivity, and pharmacokinetic properties and showed no bioactivation liability in glutathione trapping studies.
View Article and Find Full Text PDF