Cardiovascular disease is a significant health concern worldwide, and varied effective treatment and prevention methods have been developed. Among these, tailored biomaterials-based strategies such as stents, scaffolds, patches, and drug delivery systems have emerged as a promising avenue. These devices are designed to match the mechanical and biological mechanisms of the cardiovascular system, ensuring optimal performance and compatibility.
View Article and Find Full Text PDFThis study presents a facile synthesis strategy for magnetic field-responsive PEGylated iron-supplement-coated rutile titanium dioxide (TiO) nanoparticles (NPs) for stimulus-responsive drug delivery. Imatinib, an anticancer drug, was successfully loaded into NPs, and its release was investigated under different pH conditions. XRD analysis confirmed the successful synthesis of PEGylated iron supplement-coated rutile titania NPs.
View Article and Find Full Text PDFAlthough -adrenoceptor ( -AR) signal transduction, which maintains cardiac function, is downregulated in failing hearts, the mechanisms for such a defect in heart failure are not fully understood. Since cardiac hypertrophy is invariably associated with heart failure, it is possible that the loss of -AR mechanisms in failing heart occurs due to hypertrophic process. In this regard, we have reviewed the information from a rat model of adaptive cardiac hypertrophy and maladaptive hypertrophy at 4 and 24 weeks after inducing pressure overload as well as adaptive cardiac hypertrophy and heart failure at 4 and 24 weeks after inducing volume overload, respectively.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) are effective antitumor agents but are associated with immune-related adverse events. ICI-induced psoriasis commonly presents in patients with a history of psoriasis but may occur de novo, and it has a significant physical and psychosocial impact. ICI-induced and non-ICI-induced psoriasis are likely mediated by similar cytokines, and similar treatments are employed.
View Article and Find Full Text PDFHeart failure is the common concluding pathway for a majority of cardiovascular diseases and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain the development of cardiac hypertrophy and progression to heart failure. One of these includes the activation of different neuroendocrine systems for elevating the circulating levels of different vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins.
View Article and Find Full Text PDFCan J Physiol Pharmacol
October 2024
Oral hormonal contraception (OHC) is a widely employed method in females for the prevention of unintended pregnancies, as well as for the treatment of menstrual disorders, endometriosis, and polycystic ovarian syndrome. However, it is believed that with OHCs use, some females may have higher risk of cardiovascular diseases, such as hypertension, diabetes, myocardial infarction, thrombosis, and heart failure. Although such risks are infrequently detected in healthy young females with the use of oral contraceptives, slightly elevated risks of cardiovascular diseases have been observed among reproductive-aged healthy females.
View Article and Find Full Text PDFPreviously, it was shown that both blood flow and angiogenesis in the ischemic hind limb of diabetic rats were increased upon CO treatment for 4 weeks. In the present study, we have compared the effects of 6 weeks CO therapy in diabetic rats with or without peripheral ischemia. Diabetes was induced in rats by a tail vein injection of streptozotocin (65 mg/kg body weight), whereas peripheral ischemia was produced by occluding the femoral artery at 2 weeks of inducing diabetes.
View Article and Find Full Text PDFAntioxidants (Basel)
October 2023
Mitochondria are specialized organelles, which serve as the "Power House" to generate energy for maintaining heart function. These organelles contain various enzymes for the oxidation of different substrates as well as the electron transport chain in the form of Complexes I to V for producing ATP through the process of oxidative phosphorylation (OXPHOS). Several studies have shown depressed OXPHOS activity due to defects in one or more components of the substrate oxidation and electron transport systems which leads to the depletion of myocardial high-energy phosphates (both creatine phosphate and ATP).
View Article and Find Full Text PDFAngiotensin II (Ang II) is formed by the action of angiotensin-converting enzyme (ACE) in the renin-angiotensin system. This hormone is known to induce cardiac hypertrophy and heart failure and its actions are mediated by the interaction of both pro- and antihypertrophic Ang II receptors (AT1R and AT2R). Ang II is also metabolized by ACE 2 to Ang-(1-7), which elicits the activation of Mas receptors (MasR) for inducing antihypertrophic actions.
View Article and Find Full Text PDFWhole-genome duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD-derived paralogs are maintained over long evolutionary periods, and the relative contributions of different selective pressures to their maintenance are still debated.
View Article and Find Full Text PDFLaryngeal edema is a common complication of endotracheal intubation. It may range from mild and asymptomatic to respiratory distress and severe stridor leading to subsequent reintubation. It is crucial to assess the patency of the airway before extubation to identify patients with a risk of developing laryngeal edema.
View Article and Find Full Text PDFAlthough acute exposure of the heart to angiotensin (Ang II) produces physiological cardiac hypertrophy and chronic exposure results in pathological hypertrophy, the signal transduction mechanisms for these effects are of complex nature. It is now evident that the hypertrophic response is mediated by the activation of Ang type 1 receptors (ATR), whereas the activation of Ang type 2 receptors (ATR) by Ang II and Mas receptors by Ang-(1-7) exerts antihypertrophic effects. Furthermore, ATR-induced activation of phospholipase C for stimulating protein kinase C, influx of Ca through sarcolemmal Ca- channels, release of Ca from the sarcoplasmic reticulum, and activation of sarcolemmal NADPH oxidase 2 for altering cardiomyocytes redox status may be involved in physiological hypertrophy.
View Article and Find Full Text PDFA plethora of studies analyse the molecular markers of drug resistance and hence help in guiding the evidence-based malaria treatment policies in India. For reporting mutations, a number of techniques including DNA sequencing, restriction-fragment length polymorphism and mutation-specific polymerase chain reaction have been employed across numerous studies, including variations in the methodology used. However, there is no sufficient data from India comparing these methods as well as report the prevalence of polymorphisms in SP drug resistance molecular markers independently using such methods.
View Article and Find Full Text PDFInt J Nanomedicine
August 2022
Introduction: Titanium dioxide nanoparticles (TiO NPs) have shown tremendous potential in targeted drug-delivery applications. Among various mechanisms, magnetically guided transport of drugs is one such technique for the said purpose. TiO NPs being diamagnetic or sometimes exhibiting very weak ferromagnetism can be modified by treating them with suitable magnetic materials.
View Article and Find Full Text PDFCan J Physiol Pharmacol
September 2022
Heart failure is invariably associated with cardiac hypertrophy and impaired cardiac performance. Although several drugs have been developed to delay the progression of heart failure, none of the existing interventions have shown beneficial effects in reducing morbidity and mortality. To determine specific targets for future drug development, we have discussed different mechanisms involving both cardiomyocytes and nonmyocyte extracellular matrix (ECM)) alterations for the transition of cardiac hypertrophy to heart failure as well as for the progression of heart failure.
View Article and Find Full Text PDFNanoparticles (NPs) with sizes ranging from 2 nm to 1 μm find various applications in the field of theranostics. Moreover, if eco-friendly methods are opted for the synthesis of biocompatible and less toxic NPs, then that's a huge success. Titanium dioxide nanoparticles (TiO NPs) have been vigorously studied for their use in medical implants, photodynamic therapy, drug delivery, biosensing and as antimicrobial agents.
View Article and Find Full Text PDFTargeted drug delivery is one such precision method of delivering medication inside the human body which can vanquish all the limitations of the conventional chemotherapeutic techniques. In the present study, two types of nanoparticles (NPs) were chosen for the in-vitro pH-responsive release study of the drug, Imatinib, namely anatase Titanium Dioxide nanoparticles (TiO NPs) and iron-capped TiO NPs, designated as Fe@TiO NPs. The novelty of this work lies behind the use of commercially available iron supplement 'Autrin' meant for human consumption, as the material to coat the TiO NPs to synthesize Fe@TiO NPs.
View Article and Find Full Text PDFCiliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes.
View Article and Find Full Text PDFAlthough heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy.
View Article and Find Full Text PDF