The CRISPR-Cas9 system is a widely popular tool for genome engineering. There is strong interest in developing tools for temporal control of CRISPR-Cas9 activity to address some of the challenges and to broaden the scope of potential applications. In this work, we describe a bio-orthogonal chemistry-based approach to control nuclease activity with temporal precision.
View Article and Find Full Text PDFGemcitabine is a nucleoside analog that has been used widely as an anticancer drug for the treatment of a variety of conditions, including ovarian, bladder, non-small-cell lung, pancreatic, and breast cancer. However, enzymatic deamination, fast systemic clearance, and the emergence of chemoresistance have limited its efficacy. Different prodrug strategies have been explored in recent years, seeking to obtain better pharmacokinetic properties, efficacy, and safety.
View Article and Find Full Text PDF