Publications by authors named "Bhiksha Raj"

Objectives: The Tamil Nadu government mandated several stay-at-home orders, with restrictions of varying intensities, to contain the first two waves of the COVID-19 pandemic. This research investigates how such orders impacted child sexual abuse (CSA) by using counterfactual prediction to compare CSA statistics with those of other crimes. After adjusting for mobility, we investigate the relationship between situational factors and recorded levels of cases registered under the Protection of Children from Sexual Offences Act (POCSO).

View Article and Find Full Text PDF

This paper addresses the deep face recognition problem under an open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. To this end, hyperspherical face recognition, as a promising line of research, has attracted increasing attention and gradually become a major focus in face recognition research. As one of the earliest works in hyperspherical face recognition, SphereFace explicitly proposed to learn face embeddings with large inter-class angular margin.

View Article and Find Full Text PDF

Autism Spectrum Disorder (ASD) is a group of lifelong neurodevelopmental disorders with complicated causes. A key symptom of ASD patients is their impaired interpersonal communication ability. Recent study shows that face scanning patterns of individuals with ASD are often different from those of typical developing (TD) ones.

View Article and Find Full Text PDF

Secure multiparty computation allows for a set of users to evaluate a particular function over their inputs without revealing the information they possess to each other. Theoretically, this can be achieved using fully homomorphic encryption systems, but so far they remain in the realm of computational impracticability. An alternative is to consider secure function evaluation using homomorphic public-key cryptosystems or Garbled Circuits, the latter being a popular trend in recent times due to important breakthroughs.

View Article and Find Full Text PDF

This paper presents a family of probabilistic latent variable models that can be used for analysis of nonnegative data. We show that there are strong ties between nonnegative matrix factorization and this family, and provide some straightforward extensions which can help in dealing with shift invariances, higher-order decompositions and sparsity constraints. We argue through these extensions that the use of this approach allows for rapid development of complex statistical models for analyzing nonnegative data.

View Article and Find Full Text PDF